SUBGROUP GROWTH IN FREE CLASS-2-NILPOTENT GROUPS
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ABSTRACT. We describe an effective procedure to compute the local subgroup zeta
functions of the free class-2-nilpotent groups on d generators, for all d. For d = 4,
this yields a new, explicit formula. For d € {4,5}, we compute the topological
subgroup zeta functions. We also obtain general results about the reduced and
topological subalgebra zeta functions. For the former, we determine the behaviour
at one; for the latter, the degree and behaviours at zero and infinity. Some of these
results confirm, in the relevant special cases, general conjectures by Rossmann.
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1. INTRODUCTION

1.1. Setup. We study the subgroup growth of finitely generated free nilpotent groups
of nilpotency class two. For d € Nxo, the free nilpotent group F; 4 of nilpotency class
two on d generators has presentation

FZ,d = <gla -5 9d | V1< iajvk <d: [[glag]]hgk] = 1>
The subgroup zeta function of Fy 4 is the Dirichlet generating series
Cra(s) = D) |Foq:H|,
H<F> 4
S

where s is a complex variable (and c0™° = 0, so the sum extends in effect only over
the subgroups of finite index). It is well-known that (g, ,(s) has an Euler product

(1.1) CF2,d(S): H CFz,mP(s)?

p prime

where, for each prime p, the Euler factor (g, .p(8) enumerates the subgroups of F 4 of
p-power index; cf. [8, Prop. 4]. By a deep result of Grunewald, Segal, and Smith ([8],
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Thm. 1]) these local zeta functions are all rational in the parameter ¢ = p~*. Com-
puting these—and other groups’—local zeta functions explicitly, however, is difficult.
Previously, explicit formulas were only known for d € {2, 3}; see Section

The free step-2-nilpotent Lie ring f2 4 on d generators has presentation

f2,d = <$1,...,3§'d | V1 gllv.]vk <d: [[‘Thx]]?xk] = 0>

The subalgebra zeta function of fa 4 is

Gz a(8) = Z [fo,a: H| ™%,

H<f2,4

It is well known that the problem of counting subgroups of the group F; ;4 is the same
as the problem of counting subalgebras of f; 4. Indeed, the fact that

CFz,d(S) = sz,d(s)

is not hard to verify; see [8, Chap. 4]. It justifies that we concentrate on subalgebra
zeta functions in the following.

For any (commutative) ring R, we set f2 4(R) = f2.¢ ®z R and consider the subal-
gebra zeta function

(1.2) Goam)(8) = >, [f2a(R): H|7,

H<f2,4(R)

enumerating R-subalgebras of f; 4(R) of finite index. In practice, we will focus on
rings R which are compact discrete valuation rings (¢cDVRs), viz. finite extensions of
the p-adic integers Z, (in characteristic zero) or rings F,[7] of formal power series
over finite fields (in positive characteristic). We write p for the unique maximal ideal
of o, with residue field cardinality |o/p| =: ¢o, a prime power. By (L.I]), the Euler
product decomposition is mirrored by the factorization

(1.3) Goa() = [T Crouz(9)-

p prime

1.2. Main results. In the present paper, we present an effective procedure to com-
pute the local subalgebra zeta functions (, ,o)(s) for all d € N2 and ¢cDVR’s o.
Theorem establishes an explicit formula for (5, 4(0)(8), by defining a bivariate ra-
tional function ¢, ,(g,t) such that ¢, ,0)(8) = (f,,4(¢o, go °)- This rational expression
G, ,(g,t) is given in terms of Gaussian ¢g-multinomials and finitely many generating
functions enumerating the elements of a subset of Nj.

We apply this formula in different ways, both theoretically and practically. First, it
inspires a notion of no-overlap subalgebra zeta function of 2 4(0) enumerating, loosely
speaking, “most of” the finite-index subalgebras of f2 4(0), see Section We prove
that this summand satisfies the same local functional equation as ¢, 4(0)(8); see The-
orem Second, we derive from the formula that, for all d and almost all cDVRs
0, the p-adic subalgebra zeta function sz, 4(0)(8) has a simple pole at s = 0, estab-
lishing a conjecture of Rossmann for the relevant algebras, see Theorem Third,
we compute the subalgebra zeta functions ¢, ,o)(s) fully explicitly by implementing
the formula in SageMath [I2] using LattE [I] and Zeta [11], see Theorem for a
paraphrase and [10.5281 /zenodo.7966735 for full details.

To consider Euler products such as is just one way to capture information
about “many” p-adic zeta functions uniformly. Others include the reduced zeta func-
tions pioneered by Evseev ([7]) and the topological zeta functions developed by Ross-
mann ([I0]). Both may be paraphrased as results of “setting ¢, = 1”7, in subtly

different ways. Crudely speaking, the reduced zeta function ({;3 (t) is the univariate

rational expression in ¢ defined as ¢j, ,(1,t). Equally informally, the topological zeta
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function (;;S(s) is the univariate rational expression in s obtained as the first non-zero
coefficient of ¢j, ,(¢,¢™*), expanded in ¢ — 1.

In Theorem we show that the reduced subalgebra zeta function Cmd( t) has a
pole at t = 1 of order D := d + (2), which is the Z-rank of f3 4. In Theorem

we establish that D is also the degree of the topological subalgebra zeta function
CtOP( ). In Theorem |[6.13|and Theorem|6.14] we show that the topological zeta function

has a simple pole at s = 0 and compute its residue there. This confirms, in the
relevant special cases, general conjectures by Rossmann. The topological and reduced
subalgebra zeta functions feature together in Theorem it links the topological
zeta function’s behaviour at infinity and the reduced zeta function’s residue at t = 1.
We also compute the topological subalgebra zeta functions (wp (s) and Cmp (s) fully
explicitly using our implementation of Theorem [4.24] see Theorems [7.5] and

1.3. Related work. For d < 3, the p-adic subalgebra zeta functions ¢, )(s)—and,
as corollaries, their topological and reduced analogues—have been known for some
time; see Section [7] for explicit formulas and references. For ¢ > 2, the subalgebra
zeta functions of the free step-c-nilpotent Lie rings on d generators f.4 are largely
unknown. To our knowledge, explicit formulas are only known for (c,d) = (3,2), by
work of Woodward; cf. [6, Thm. 2.35].

The ideal zeta functions (;d( 0)(s), enumerating ideals of finite index, have been

computed, for all d, in [I6]. This yields, in particular, the (global) ideal zeta function
ijd(s) =11, ijd(zp)(s)' In analogy with we have ij’d(s) = CFM(S)’ the normal
zeta function of the free class-2-nilpotent group F5 4, enumerating normal subgroups
of finite index.

1.4. Organization and notation. In Section [2, we recall some well-known nomen-
clature and results. We consider Gaussian binomial and multinomial coefficients
in Section the enumeration of submodules of o-modules of finite rank in Sec-
tion convex polyhedral cones in Q™ in Section monoids in N§*, in particular,
solution sets of systems of linear homogeneous Diophantine equations, in Section
and generating functions of subsets of N{’, in particular monoids, in Section
In Sections and we define some notation and prove some preliminary results
for certain subsets of a monoid in N{j*. In Section [3| we define the specific monoids
and subsets in Ni* that are used in the later sections to write down formulas for the
considered subalgebra zeta functions.

Section culminates in Theorem an explicit formula for ¢, ,)(s) as a fi-
nite sum, whose summands are products of Gaussian ¢g-multinomials and generating
functions of subsets of Ni* as discussed in Section In Section 5] we use this expli-
cit formula to obtain several general results on the p-adic subalgebra zeta functions
CfQ a(0)(8)- Notably, we introduce the no-overlap subalgebra zeta function of f; 4(0)
in Section [5.1] and show that for all d and almost all cDVRs o, the p-adic subalgebra
zeta functlon Cha.a(0) (8 (s) has a simple pole at s = 0 in Section

In Section [6] we obtain results on the reduced and topological zeta functions men-
tioned in Section For the former, we determine the behaviour at ¢ = 1 and for
the latter, the degree and behaviours at zero and infinity. In Section [7} we record
fully explicit formulas for p-adic, reduced and topological subalgebra zeta functions
associated with fo ¢ for small values of d, both known and new.

Table gives a partial list of the notation used.

Acknowledgements. This work forms part of the second author’s doctoral dissertation,
supervised by the third author. We would like to thank Tobias Rossmann for pointing
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Notation Meaning Location
0 compact discrete valuation ring Section |1.1
Qo cardinality of the residue field o/p, a prime power Section 1.1
f2,4(0) tensor product f2 4 ®z 0 Section |1.1
Gip.a(0)(s)  subalgebra zeta function of fs,4(0) (11.2)
(jp.q(q,t) rational function with ¢j, ,(¢o, q, °) = Cb’d(o)(s) forallo  Section |1.2
D d+ (’21) = (dérl), the Z-rank of f 4 Section (1.2
d () Section [2.1
(’})q Gaussian multinomial coefficient Definition [2.2
Pn set of integer partitions of at most n parts Section [2.2.1
v< v; < p; for i € [n] for partitions p,v € P, Section [2.2.1
/\gn) (A1) jefn] € Pn Section [2.2.1
a(A, u;0) number of subgroups of isomorphism type p of a finite  Section [2.2.1
abelian p-group of isomorphism type A
|A| PR Section [2.2.2)
F interior of a monoid F' in N{* Section [2.4
X(Z) generating function of X < Ni’ Section [2.5
Dx specific finite subset of a monoid F' in Ni’ (12.6)
Wy set of relevant pairs (I, 0) with I < [d—1] and 0 € Sy Definition |3.11
Gro specific subset of Ng”d/ for each (I,0) € Wy Definition [3.13
X tuple of indeterminates (X;)c[q) Section ‘ﬂ
Y tuple of indeterminates (Y;)je(4 Section (3.2
Hyy specific subset of Nngd/ for each I < [d — 1] and J <  Definition |3.30
[d" —1]
Wer Dyck word associated with o € Sy Definition |3.37]
5% integer partition (41;) je[a] € Par such that the multisets  Definition 4.1
{; | 7 €[d]} and {\; + Ny | i < ¢’ € [d]} coincide
GMC;, product of Gaussian multinomial coefficients associ- Definition |4.19
ated with (I,0) € Wy
Xo numerical data map Definition |4.21
Cf’;”d (¢,t) Dbivariate rational expression such that the evaluation Section |5.1
C?;’,d(% q; %) equals Cf“;’d(o)(s) for all o ]
Cr;";'(q, t) bivariate rational expression such that the evaluation Section 5.1
’ Cg'fi'(qo,q;s) equals Cg'fi'(o)(s) for all o ]
Xn.o. no-overlap numerical data map Section [5.2
MCr,» product of multinomial coefficients associated with  Definition [6.1
(Z,0)
aq () non-negative integers for each o € 89 and o € Nj'*  Definition 6.2
bo () that are closely related to the numerical data map x,
Uromax  set of u e Ur, such that dim K, = D Definition [6.4]
cd specific positive rational number depending only on d  Definition 6.4
gﬁ (t) reduced subalgebra zeta function of f3 4 Section |6.2
Xred reduced numerical data map Definition [6.6
C;;S (s) topological subalgebra zeta function of fa 4 Section 6.3

TABLE 1.1. Notation.
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out to us how to use Zeta [I1] to efficiently write large sums of rational functions of a
specific form on a common denominator. This work was partly funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) — SFB-TRR 358/1
2023 — 491392403.

2. PRELIMINARIES

2.1. Gaussian binomial and multinomial coefficients. We start by recalling
Gaussian binomial and multinomial coefficients.

Definition 2.1. Let k,n € Ng with k& < n. The Gaussian binomial coefficient or
q-binomial coefficient (Z)q is the following polynomial in ¢:

(n> _ (=g =g (1—g" ")

k (=)0 =) (1= ¢)

Definition 2.2. Let n € Ng and J = {j; | i € [r]} < [n — 1] with j; < --- < j,. The
Gaussian multinomial coefficient (?)q is the polynomial in ¢ defined as

G),= )G G
J), \i)Nde—a/,  \dr—dr—1/,

We write S,, for the symmetric group of degree n, a Coxeter group with Coxeter
generators $i,...,8,—1. For o € S, we write ¢(o) for the Coxeter length of ¢ and
Des(o) ={ie[n—1] | l(os;) < £(0)} for its (right) descent set. The unique ¢-longest
element in S, is denoted oo, with £(cg) = (3). The identities

l(oog) = l(og) —L(o), Des(oog) = [n— 1]\ Des(o),

and

(2.1) <3)q _ Y

0€Sp, Des(o)=J

for J < [n — 1] are well-known. We represent permutations o € S,, by their one-line
notation, i.e. the word o(1)o(2)...0(n) in the letters [n].

2.2. Counting submodules of o-modules. We recall some well-known facts about
the enumeration of submodules of finitely generated o-modules, where o is a cDVR.
We consider torsion modules in Section[2.2.7]and torsion-free modules in Section 2.2.2]

2.2.1. Finite o-modules. Let P, < Nj be the set of integer partitions of at most
n (non-zero) parts, i.e. the set of tuples A = (\;)je[,) With A; € Ny for i € [n] and
Ai = \iy1 for i € [n—1]. By convention, A\,+1 = 0 for A € P,,. We call a finite o-module
of isomorphism type X if it is isomorphic to the product C, ) := 0/pM x - x o/ptn
of finite cyclic o-modules.

Let A\, € Pp. We write p < A if p; < \; for every i € [n]. Let a(X, u;0) be
the number of submodules of C, ) of isomorphism type p. The following formula for
a(A, p;0) was recorded (at least in the case o = Z,, i.e. for finite abelian p-groups)
in [4]. We denote by X and u the conjugate partitions of A and p, respectively.

Proposition 2.3 ([4]). Let u < X be partitions, with conjugate partitions ' < N.
Then

LN —ph) )\/ — lu/
(2.2) a(\ pro) = [ [ ao " < A I
E>1 M — Hgyq gt

For later use, we obtain a slightly different expression for a(\, u;0).
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A1 A2 Az M1 f2 3

\/

M1 Mo Mg My M5 Mg

FiGURE 2.1. Illustration of Example

Definition 2.4. Let p < X € P,,. Let m; € Ny for j € [2n] be such that multisets A U p
and {m;};c[o,) are equal and my > mg > -+ = may,. Let Lo = Mo = 0 and

Lj = #{ie[n] [ Ai = my},
Mj = #{i € [n] | pi = mj},
for j € [2n].
We note that similar but different integers L; and M; are defined in [13, (2.13)].

Ezample 2.5. For A\ = (4,2,1) and p = (3,2,0) in P3, we find that (m;);es] =
(47372727 170)a (Lj)je{O,...,ﬁ} = (07 L, 1a2a25353)v and (Mj)je{O,...,G} = (070’ 1727272a3)'
See Figure for an illustration of this example.

The following lemma resembles [13, Lemmas 2.16 and 2.17].

Lemma 2.6. Let A\, u € P, with p < . Then

2n L:— M 1 M(L M)( )
29 atme=[] (5] g
£EM—M4%M

Proof. The product in (2.2)) is indexed by integers k. Suppose that j € [2n] and
k € [Ai] are such that mj; > k > m;;;. Then A} = L; and pj, = M;. Hence (2.2)

reads
2n mj M, (L;—M,) L,_M/
aGuso) =[] [T b (=t
J=1 k=mji1+1 A S Ve

Now pj, is equal to Mj if m; > k > mj;1 and equal to M; if K = m; and i =

max({i € [2n] | M; < M;}). If py , = M, then (]j\:jjﬁf“) . = 1. Removing these
ITHE+1 g

factors from the product we obtain

2n m;
Lj— M;— M;(L;—M;)
Oé(>\,/,L;0)= ( J J > qu J J
jljl Mj =M1/ o k=rr£.[1+1
2
= ﬁ (Lj - Mj—1> qi‘/[j(Lj—Mj)(mj—ij). 0
Ay - 0 )

Given A\ € Ny, we write )\gn) for (A1) jefn] € Pn- The following is obvious.
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Corollary 2.7. Let A€ P, and set [ :={ie€[n—1]|Xi > Niy1}. Then
() y..)y = (™ T3 =Ase1)
a()\l ,/\,o> = <I>q01j1jlqo :

2.2.2. Free o-modules. Let m be a uniformiser of o, i.e. a generator of p.

Definition 2.8. Let A be a submodule of o™ of finite index. Let {m" }jen) With Ay >
-++ = Ap be the multiset of elementary divisors of 0™/A. The partition A = (\;)je[n €
Py, is the elementary divisor type of A, written e(A) = A.

We note that Corollary yields the number of submodules of 0™ of elementary
divisor type A. This proves the following proposition, which counts submodules of
fixed elementary divisor type. Given A = (\j)je[n] € Pn, We set [A| = 210, ;.

Proposition 2.9 ([3, Section 4.2]). Given a partition A\ = (A;j) je[n] € Pn,
S Jom s A7 = a(A, A 0)gs .
A<o™
e(A)=X

The following proposition counts submodules containing a given submodule.

Proposition 2.10 ([, Section 4.3]). Let M < o™ be a submodule with elementary
divisor type e(M) = p. Then

Solom A7 = > alprio) g

A<o™ vePy,
A>=M V<
Proof. Observe that o"/M = C, , and [0o" : A| = q|0V| if e(A) = v. O

2.3. Convex polyhedral cones in Q™. We recall some general nomenclature and
results for convex polyhedral cones. We largely follow [14], p. 477].

The dimension dim A of a subset A € Q™ is the dimension of the subspace of Q™
generated by A. A cone in Q™ is a subset € € Q™ that is closed under addition and
scaling by non-negative rational numbers. The convex cone generated by A < Q™ is

Ca:={az1+ - +amy | x1,...,2. € Ajaq,...,a; € Qxp}.

A linear half-space of Q™ is a subset of Q™ of the form H = {v e Q™ | w-v = 0} for
a vector w € Q™\{0}. A convex polyhedral cone € is the intersection of finitely many
half-spaces. It is pointed if it does not contain a line.

Let € be a convex polyhedral cone in Q™. A supporting hyperplane for C is a
hyperplane H that divides Q™ into two linear half-spaces H* and H~ such that @
CHT or @< H . A face F of C is either an intersection € nJH of € with a supporting
hyperplane H or equal to C. Faces of dimension one are called extreme rays and faces
of dimension m — 1 are called facets. The convex polyhedral cone C is simplicial if it
has exactly dim € extreme rays.

For x € Q™ and € > 0, let N.(x) be the closed ball or radius ¢ around x. Let A be
any subset of Q" and aff(A) the affine hull of A. The relative interior relint(A) of A
is the set of points a € A such that there is an € > 0 with N.(z) n aff(A) contained
in A. If A is a convex polyhedral cone, then the relative interior of A is the set of
points in A that are not contained in any face of A of lower dimension than A.

Definition 2.11 ([14, p. 477]). Let € be a convex polyhedral cone in Q™. A triangu-
lation of € is a finite family I' = {XK, },cu of simplicial polyhedral cones X, such that
the following hold:

e C= UueU j(:u,
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e for each X, € I, every face of X, is an element of I, and
e for every K,, X, € I, the intersection K, "X, is a common face of K, and X,.

An element of I' is called a face of T'.

Remark 2.12. If T' = {X,}yev is a triangulation of €, then € = | J ., relint(X,) and
this union is disjoint.

Proposition 2.13 ([14, Lem. 4.5.1]). Every pointed polyhedral cone € has a triangu-
lation whose one-dimensional faces are the extreme rays of C.

Let P be a poset with partial order relation <p. An interval in P is a subset of P
of the form [z,y] = {z € P | x <p z <p y} for some x <p y € P. An interval is
non-trivial if © <p y. The element = covers y in P if [y, x| = {x,y}. The poset P
is graded if it is endowed with a rank function rk : P — Ny, i.e. a function satisfying
rk(xz) > rk(y) if x >p y in P and rk(z) = rk(y) + 1 if x covers y. A graded poset P is
FEulerian if, in any non-trivial interval, the number of elements of even rank and the
number of elements odd rank coincide.

Let C be a convex polyhedral cone in Q™. The lattice of faces L(C) is the poset
consisting of the faces of € ordered by inclusion. The following is well known and is
a consequence of [3, Cor. 3.5.4] and [3], Cor. 3.3.3].

Proposition 2.14. The lattice of faces L(C) of C is Eulerian. If C is pointed, then
the rank of a face F is dim(F).

2.4. Monoids in N{j'. We discuss monoids in N§*, in particular those that are as-
sociated with systems of homogeneous linear equations with integer coefficients. We
largely follow [14, Sec. 4.5].

A monoid F in N{J' is a subset of N{* that contains zero and is closed under addition.
The interior of F', denoted by F, is the set of points in F' that lie in the relative interior
of Cp. The completely fundamental elements CF(F) of F' are the elements § € F' such
that if n € N and o, ¢/ € F are such that ng = a+ o/, then a = if and o/ = (n —14)f
for some i € Ny with ¢ < n. A system of » homogeneous linear equations with integer

coefficients in m variables a1, ..., a,, can always be written as ®(aq,..., ;) =0
for an r x m matrix ® over Z. The set of solutions in N{* of this system,
(2.4) E =FE3 :={ae Ny | Pa = 0},

is a monoid in N,

Remark 2.15. The convex cone Cp generated by F is a pointed convex polyhedral
cone. The completely fundamental elements of E each generate an extreme ray of Cg
and vice versa.

Remark 2.16. We may assume that the rank of ® is r by deleting dependent rows
of . If E n N™ = ¢, then there must be an i € [m] such that the i-th entry of «
is 0 for every a € C. In this case, we can just ignore the i-th coordinate. In general,
we assume that no coordinates are redundant and that £ n N # . It then follows
that the interior E is the set £ n N™ of positive points in E.

Remark 2.17. Through slack variables, (2.4]) can be used to study monoids defined by
linear inequalities as well. Concretely, let ® € Matgy,,(Z) and consider the monoid
8 = {ve N | v = 0}. The points in 8 are in bijection with the points in

{veNgl,'yeng\fbv—fy:O},

where 7 is a tuple of k (slack) variables.



SUBGROUP GROWTH IN FREE CLASS-2-NILPOTENT GROUPS 9

A monoid F' in N’ is simplicial if there exist Q-linearly independent tuples a;,
..., oz € F called quasigenerators of F' such that
F={yeN"|3IneN,Jay,...,a; € Ng:ny =aja; + - + aroy}.

A monoid F is simplicial if and only if CF is a simplicial polyhedral cone. In that case,
the completely fundamental elements CF(F) are quasigenerators of F. The interior F'
of a simplicial monoid F' can be characterised by

F={yeN"|3neN,da,...,a; e N:ny = ajas + - + ayay}.

The support of a tuple z = (z1,...,2,) € QF is the set supp(z) := {i € [m] |
x; # 0}. The support of a set V< Q™ is supp(V) := (J,ey supp(v). Suppose that
E = Eg for some ® € Mat,w,(Z). The lattice of supports L(E) of E is the set
{supp(a) | @ € E} of supports of tuples in E, ordered by inclusion. The next result
identifies the posets L(Cg) and L(E).

Theorem 2.18 ([14, p. 479]). The map
L(Cg) — L(E) : F — supp(¥)
i a poset isomorphism.

Because of Remark we may assume that L(E) has [m] as greatest element.

2.5. Generating functions of subsets of Nj'. We discuss a generating function
associated with subsets of N{J*, in particular monoids and their interiors. We largely
follow [14, Sec. 4.5].

For a subset X < N{*, define the generating function

(2.5) X(z):= ) z*eQ[z],
acX

in the indeterminates Z = (Z;) je[m], where Z% = Hje[m] ZJ% for a = () jepm) € Ny
The sets X whose generating functions we consider are often monoids F' or £ = Eg,
or the interior F' or E of such monoids.

Consider a monoid F' in N{' that is simplicial with quasigenerators aq,..., .
Define the following finite subsets of F' which depend on the choice of quasigenerators:

Dp:={zeF|lz=aa1+...+aqa, 0<a; <1},

Dp:={rxeF|z=a0+...+a0, 0<a <1}

Theorem 2.19 ([14, Cor. 4.5.8]). Let F' < N* be a simplicial monoid with quasigen-

erators azq, ...,ay. The generating functions F(Z) and F(Z) are rational and given
by:
7.3
F(z) - —20e
[[im (1 —2Z%)
_ > V/d
(2.6) F(Z) = ——PF

[Ty (1= 2Z2)
For monoids E of the form (2.4]), we have the following result.

Theorem 2.20 ([14, Theorem éB.ll]). Let E = Eg for some ® € Mat,x,,(Z). The
generating functions E(Z) and E(Z) are rational and when written in lowest terms,

they both have denominator
[T (1-27).

BeCF(E)
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The following two theorems are reciprocity results for X (Z), for simplicial monoids

and monoids of the form (2.4)) respectively. Let Z=1 = (Zj_l)je[m].

Theorem 2.21 ([I4, Lemma 4.5.13]). Let F' < N™ be a simplicial monoid of dimen-
sion n. Then

F(Z™Y = (-1)"F(Z).
Theorem 2.22 ([14, Theorem 4.5.14]). Let E = Eg for some ® € Mat, «xm(Z) and n
be the dimension of E. Then

E(z7") = (-1)"E(Z).

2.6. The submonoids Fg 4 and subsets FE,A of E = Fg. Let £ = Eg for some
® € Mat, xm(Z). We define submonoids Fg 4 and subsets fE, 4 of E where A is an
element of the lattice of supports L(E) of E. We formulate some reciprocity results
for their generating functions.
For A € L(FE), define

Fp g :={a e E |supp(a) < A},

Fpa:={a€F |supp(a) = A}.
The first set, Fg 4, is a submonoid of E. The convex cone Cp, , is the unique
(cf. Theorem [2.18)) face of Cp whose support is A. In other words, Cp, , is the

inverse image of A under the map in (2.18)). The second set Fg 4 is a subset of E
and is the interior of F'g 4. Clearly, £ = Fg [,,,) and

(2.7) Fpa= U Fg g,
BeL(E),BSA
where the union is disjoint.
Remark 2.23. If o € Fg 4, then the i-th coordinate of « is zero for all i € [m]\A.
Therefore, the coordinates [m]\A of Fg 4 may be discarded. That way Fp s = Eg,,

where ® 4 is the matrix found by removing the columns [m]\A from ® and deleting
resulting dependent rows.

Remark 2.24. For every A € L(E), let Za be the tuple (Z;);c[m) where Z; is an
indeterminate for j € A and Z; = 0 for j € [m]\A. Then Fg A(Z) = E(Z4).

The following proposition is a reciprocity result for the submonoids Fg 4 < E and
subsets FE,A c FE.

Proposition 2.25. Let E = Eg for some ® € Mat, x,(Z). For all A€ L(E),
(28)  FpaZ™) = (-0 AP A(Z) = (- R Y] Frp(2),
BeL(E),BCA

Proof. The first equality is an application of Theorem to F'g, 4, which is applicable
because of Remark Recall that Fg 4 is the interior of Fp 4. Using (2.7), the
second equality follows. (|

Corollary states an alternative reciprocity result for F'g 4 that is analogous to
[18, Lemma 2.17|. To prove it, we need the following lemma.

Lemma 2.26. Let E = Eg for some ® € Mat,«,(Z). For all A,C € L(E) with
AcC,

(2.9) Z (—1)dim Fen _ {(—Udime if A=C,

BeL(E),ACB<C 0 otherwise.
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Proof. If A = C, then the summation in has exactly one summand, namely
(—1)4mFe.a  In general, the set {B € L(E) | A < B < C} is an interval in L(E).
If A # C, then it is a non-trivial interval. Combining Proposition with The-
orem we find that L(FE) is an Eulerian poset where the rank of B € L(E)
is dim Fg g. Recall that Eulerian means that in every non-trivial interval, the number
of elements of even rank and the number of elements of odd rank coincide. Therefore,
the summation completely cancels out if A # C. O

Corollary 2.27. Let E = Eg for some ® € Mat, x,(Z) and n be the dimension of E.
Let A < supp(E) be such that A€ L(E) or supp(E)\A € L(E). Then

(2.10) > FepZ)=(-1)" > Fro(Z).
BeL(E),B2A CeL(E),C2supp(E)\A

Proof (adapted from [18, Lemma 2.17]). Using (2.8)), we find that

> Fppz )= Y (-nimFes N Fpo(z)

BeL(E),B2A BeL(E),B2A CeL(E),C<B

> Yoo (—)ImFEs | Fpo(2),

CeL(E) \ BeL(E),B2CUA

(2.11)

where we used that dim Fgp = dimFgp. If A € L(E), then also AU C € L(E)
for C € L(E). Therefore it follows from Lemma that the expression between
brackets in is (—1)¢ when C U A = supp(FE) or equivalently C' 2 supp(F)\A,
and zero otherwise. Thus holds if A € L(E). Notice that the roles of A and
supp(F)\A in are symmetric, so also holds if supp(F)\A € L(E). O

2.7. The subsets Ip ac of E = Eg. Let E = Eg for some ® € Mat, xmnm(Z). We
define subsets Ig 4 ¢ of E for all A,C € L(E) with A < C. We show a reciprocity
result for their generating functions and specify a decomposition as a disjoint union

of interiors of simplicial monoids.
For all A,C < [m] with A < C, define

Ipac:={aeE|Acsupp(a) < C}

In other words, the elements in Ig 4 ¢ are the elements of E that have positive entries
in the coordinates indexed by elements in A, non-negative entries in the coordinates
indexed by elements in C\ A and zeroes elsewhere. Obviously,

(2.12) Ig ac = U Fgg,
BeL(E),ACBSC

where the union is disjoint.
We formulate a reciprocity result for Ig 4 c when A,C € L(E) and C\A € L(E).

Proposition 2.28. Let E = Eg for some ® € Mat, x,,,(Z). Suppose that A,C € L(E)
with A < C and C\A € L(E). Then

(2.13) Igac(Z7h) = (=) BACTE 04 o(2).
Proof. By (12.12)),
(2.14) Igac(Z™) = > Fpp(Z™).

BeL(E),ASB<C
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By ([2.8)), it follows that

(2.15)  Igac(Z™) = > (-pdmFee N Fpp(2)
BeL(E),AcB=C DeL(E),DSB

Z Z (_1)dime’B FE,D(Z)

DeL(E),D<C \ BEL(E),AuDSBcC

Since, A and D are in L(FE), it follows that Au D € L(FE). Therefore by Lemma

the expression between brackets is (—1)dimFEvc when A U D = C, or equivalently
C\A € D, and zero otherwise. Thus we find

Ipac(Z') = y (14 FecFy b(Z).
DeL(E),C\AcDcC

Since (—1)dimFE’C does not depend on D, it may be pulled out of the summation.
Using (2.12)), and the fact that dim Fg ¢ = dim Ig 4 ¢, we then find (2.13). O

The following proposition gives a decomposition of Ir 4. as a disjoint union of
interiors of simplicial monoids.

Proposition 2.29. Let E = Eg for some ® € Mat,«,(Z) and A,C € L(E) with
A < C. There is a finite family T' = {Ky}uev of simplicial monoids K,, < Ni* such
that

o I ac =y Ku and this union is disjoint,

e CF(K,) € CF(E) foralluel.

Proof. already writes I 4 c as a disjoint union of interiors of monoids Fg g,
but these are not simplicial in general. By Remark and Remark Crp x
is a pointed convex polyhedral cone with extreme rays generated by the completely
fundamental elements of Fg . Since Cpy , is a face of Cp, the completely funda-
mental elements of Fp p are all completely fundamental elements of E. Therefore,
by Proposition Crp p has a triangulation I'p = {Ku}uevy, where each K, for
u € Up is a simplicial polyhedral cone and the one-dimensional faces are generated by
a completely fundamental element of E. Let Ug be the set of v € Up such that X,
is not contained in any of the facets of Cpy ;. Equivalently, Up is the set of u € Up
such that relint(X,) is contained in relint(Cry ). Set K, = K, n Fg g for u € Up.
Then

Fpp =relint(Cp, ;) N Fpp = U relint(K,) n Fg p = U K,.
uelg ueUy
Setting U = Uper(p),ac pec Up, we find using (2.12)) that Uwer Ku = Ip,4,c and this

union is disjoint because the K, coming from the same triangulation I'g are disjoint,
and the union in (2.12)) is also disjoint. O

d+d’
3. THE SUBSETS G, AND Hj ; OF Nj

In this section, we define the specific subsets of Njj* that are used in the later sections
to write down formulas for the considered subalgebra zeta functions. In Sections
and we define monoids E, < Ni'” and E,, < Nngd +1 In Sections and
we discuss subsets G, of Ng+d/, which are used to express a formula for (j, d(o)(s)
in Section and C;;d(o)(s) in Section H In Section we discuss subsets Hj ;

of Ng+d/, which are used to express a formula for G lJ)(s) in Section We also
prove some properties of the associated generating functions that are used to prove
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properties of (, ,0)($), C]Z;’d(o)(s), and (fr;";'(o)(s) in Section b Dyck words and the
relation between the Gy, and H 1,] are discussed in Section 3.0)

3.1. The monoids E, < Nj. Set d' := (g) We define monoids E, < Nj* for
certain permutations o € Syy. This is done by defining a matrix @, and setting

E, = ECI>U as in "

The permutations o € Sop for which we define a monoid F, are the following:

Definition 3.1. Let 8oy be the set of permutations o € Sy such that

(3.1) {ielil [o() <d} <[{leli]|o(l) > d}

for all ¢ € [2d'] and if i < j € [2d'] are such that o(i),0(j) € [d'] and o (i) > o(j), then
o(i)>o(i+1)>--->0(—1)>0a(j).

Ezample 3.2. Let d = d’ = 3. Then 123456 ¢ Sop as is not satisfied for i € [5].

Also 653421 ¢ 8oy because 3 < 5 are such that o(3) = 3, o(5) = 2 € [3], and
0(3)=3>0(5) =2,yet 0(3) =3 F c(4) =4 > o(5) = 2. However, 451632 € Soy.

We formalize a way to identify each element of the set {(i,7) € [d]* | i < j} u [d]

by a unique integer in [2d'].
Definition 3.3. Define the bijection
b:{(i,j)e[d]|i<j}uld]—[2d]:
(i,5) —d +j—1+ (G —1)(2d—2—1)/2
J=J

Remark 3.4. The map b respects the lexicographical ordering of the pairs (i, 7) with
i<j.
Ezample 3.5. If d = 4, then b maps

11, 404, (1,2)—>7, (2,3)— 10,

252 55, (1,3)—8, (2,4)— 11,

353, 66, (1,4)—09, (3,4)— 12.

Next, we associate a tuple of length d+ d’ to every element of [2d']. For i € [d+d'],
let 6; € NgJ’d, be the tuple whose ith entry is one, while the other entries are zero.
Recall that we write (™) for the tuple (z) je[m]-

Definition 3.6 (Corresponding tuple). Let i € [d']. The tuple v; corresponding to i is

d+d
v = 2 5k — (O(d-‘r’i—l)7 l(d/—i-‘rl)).
k=d+i

Let i € d’ 4 [d'] and b=1(i) = (4, k). The tuple v; corresponding to i is
d d
v; = Z 5 + Z 5 = (O(j—l)’ 1(k—j)’2(d—k+1)’0(d'))'
=k

I=j

For i,j € [d + d'], let v; ; be the j-th component of v;.

Example 3.7. Let d = 3 and i = 4. Then b~1(i) = (1,2) and v4 = (1,2,2,0,0,0).
Now let i = 5. Then b~1(i) = (1,3) and v = (1,1,2,0,0,0).

Using the integers v; j, we define the matrix ®, and monoid E,.
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Definition 3.8. Let 0 € 8oy,
Ry :={ic[2d —1]|o(i)>d oro(i+1)>d'},

o i= |Ry|, and my := d + d' + 5. Let wf; 1= vy(); — Vo(it1),; for i € [2d" — 1] and
je[d+d]. Then ®, is the r, x my-matrix, whose row corresponding to i € R, has

wy; in column j € [d + d'],
—1 in column d + d' + 1,
0 in the remaining columns.

Let E, be the monoid Eg_ associated with the matrix ®7, as in ([2.4]).

Remark 3.9. The matrix ®, in Definition [3.8|is only defined for permutations o € Sy
instead of all o € Sy, partially in order for F, n N to be non-empty as Remark
requires.

Ezample 3.10. Let 0 = 451632 € 8¢. Then r, = 4, m, = 10, and

o1 o o o o0 -1 0 0 0
11 2 -1 -1 -1 0 -1 0 O
0 -1 -2 1 1 1 0 0 -1 0
o1 2 o0 0 -1 0 0 0 -1

d, =

3.2. The subsets G, < Ngﬂl/. We define subsets Gr, < Ng*d/ for certain pairs
(I,0) with I = [d—1] and o € 8y¢. These sets G, are used in Sections[f.4]and [5.1] to
write down formulas for ¢, ,0)(s) and C’Z;’d(o)(s). The pairs (I, 0) for which we define

a set G, are the following:

Definition 3.11. Let Wy be the set of pairs (I,0) with I € [d — 1] and o € Sop
such that the following system of inequalities in the variables r1, ..., ry has non-zero
solutions in Ng:

r; >0 forie I,

ri =0 for i e [d — 1)\I,

2221(%‘,19 —vjp)re >0 fori,jed+ [d] with o71(i) < 071(j) and i < j,
Zi:l(vi,k —vjp)re =0 fori,jed+ [d] with o71(i) < o71(j) and i > j.

(3.2)

Ezample 3.12. Let d = 2, so d = 1. The set 8y contains only 21. If I = ¢,
then reduces to one equation: r; = 0, and therefore any ro € N together with
r1 = 0 gives a non-zero solution. If I = {1}, then reduces to one inequality:
ry > 0, and therefore any pair ;1 € N, ro € Ny gives a non-zero solution. Thus

Wo = {(d,21), ({1}, 21)}.
For o € Sy, let Asc(o) := {i € [2d'] | 0(i) < (i + 1)} and Des(o) := {i € [2d'] |
o(i) > o(i+1)}. Let r and s be short for rq,...,rq and sq1,. .., sg respectively.

Definition 3.13. Write Ng+d’ = {(r,s) | ri,sj € No}. For (I,0) € Wy, the set G, is
the set of tuples (7, s) € Ng“ll that satisfy the following equations and inequalities:

(3.3) ri >0 foriel,

(3.4) r; =0 for i e [d—1]\I,
(3.5) Z;l:l wy iy + 2?/:1 wy ;85 >0 for i€ Asc(o),
(3.6) Z;l:l wy ;i + Z?:l w4585 =0  for i€ Des(o).

Ezample 3.14. Let d = 2 and (I,0) = ({1},21). Then G, is the set of tuples
(ri,7re,51) € Ng such that r; > 0 and r1 + 2ro — 51 = 0.
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Remark 3.15. The set Wy is designed in order for the sets G, to be non-empty.
Remark 3.16. The dimension of Gy, is d + d’' — |[d — 1]\I|. Therefore
max {dim G, | (I[,0) e Wy} =d + d',

and the maximum is attained for the pairs (I,0) € Wy with [ = [d — 1].

We describe which entries s; of (r, s) are positive when (r,s) € Gy ,.
Definition 3.17. For o € Sqy, define

Joi={jeld =1]1o7 () <o (G + 1}

Ezample 3.18. Let d = 2 and (I,0) = ({1},21). Then J, = .

Proposition 3.19. Let (r,s) € Gro. If j € J,, then s; > 0. If j € [d — 1|\ J,, then
S; = 0.

Proof. Let j € Jy, ie. 071(j) < o71(j + 1). Then summing the common left-hand
side of and over i € [c71(j),071(j +1) — 1] results in s;. There necessarily
is an ascent in the interval [o=1(j),07(j + 1) — 1]. Therefore summing over
i€[o71(4),071(j+1)—1]nAsc(o) and overie [071(j),0 1 (j+1)—1]nDes(o)
results in s; > 0. Now let j € [d' —1]\J,, i.e. 071(j) > 7 1(j +1). Then summing the
common left-hand side of and over i € [071(j + 1),071(j) — 1] results in
—s;. Because o € 8y, there can only be descents the interval [c=1(j +1),071(j) —1].
Thus summing over i € [0 1(j + 1),07(j) — 1] results in —s; > 0, from which
we deduce s; = 0. O

3.3. Alternative description of Gj,. In (2.7) we defined subsets Ig 4c of E,
where A and C' encoded which entries were positive and non-negative, respectively.
We now describe G, using such a set Ig 4 ¢ where E = E, from Section

Definition 3.20. For o € Sog, let {j; | © € [rs]} = R, with j;3 = -+ = j,_. For every
(I,0) € Wy, let A1, and Cy, be the following subsets of [m]:

Ao =10 (d+ Js) U (d+d + {i€[rs] | ji € Asc(0)}) ,
Cro=Tu(d+J,)u{dd+d}u(d+d+[r.]).

Emample 3.21. Let d = 2 and (I, U) = ({1},21) Then A{1}721 = {1} and 0{1}721 =
{1727 3’ 4}'

Proposition 3.22. Let (I,0) € Wy. Let pr : N — N pe the projection map
which ignores the last r, coordinates. Restricting this projection map to the subset
IEG,AI,U,CI,U c E, < N results in a bijection between IEU,AI,U,CI,U and Gpq.

Proof. Let ~ be short for v1,...,7r,. Suppose that (r,s,7) € Ig, a,,c;,- Then
is satisfied because I < Ay, and is satisfied because ([d—1\I)nCr, = . Also
(3.6) is satisfied for all i € R, because of the definition of ®, and d+d' + [rs] < Cr .
If 4 is, moreover, an ascend, then holds because d +d' + {i € [ro] | ji € Asc(0)} €
Aros. If i € Des(0)\Ry, ie. 0(i + 1) < o(i) € [d'], then (i + 1) + 1 = o(i) (because
o € S94) and therefore simplifies to —s,(;+1) = 0. As o(i+1)isin [d'—1]\J, and
therefore d+o(i+1) is not in Cy 4, it follows that s,(;4.1) = 0 and therefore holds.

If i € Asc(0)\Ry, i.e. 0(i) < o(i+1) < d', then (3.5) simplifies to ng:(gﬂ s; > 0. If
o Yo(i) + 1) <4, then (i) + 1 € J, and therefore d + o(i) + 1 € d + J, < Aj, and
So(iy+1 > 0. If 07 (o (i) + 1) > 4, then o(i) € J, and therefore d+ o (i) € d+J, = Af o

and s,(;) > 0. In any case (3.5)) holds. Thus we have that (r,s) € G-
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The restricted projection map pr]| I, is injective because ~ are slack vari-

A1,.6:C1,0
ables, therefore are uniquely determined by (7, s). To prove that it is surjective, let
(r,s) € G, Again because v are slack variables, we can find (v;);e[,] such that
(r,s,v) € E,. Because of and (3.4), we know that for i € [d — 1], r; > 0 if
and only if i € A7, and otherwise ¢ ¢ C7,. Using Proposition we find that for
jeld —1],s;>0ifand only if d+ j € (d + J,) € As, and otherwise d + i ¢ Cr ..
We conclude that (r,s,v) € Ig, 4;,.c;.,- O

Let X = (Xi)ie[a, Y = (Yj)je[a) and Z = (Zy)re[r,] be tuples of indeterminates.
The generating series enumerating the elements of E,, Gj,, and I, 4, ,.c;, as in
Section are denoted by Ex(X,Y,Z), G1,(X,Y), and Ig, a,,.0;,(X,Y,Z) re-
spectively. By Proposition it follows that I, a;,.c;,(X,Y,1) = G1,(X,Y),
where 1 is the all-one tuple of length r,.

Often, we will use the following subdivision of /g, 4, ,.c;, into simplicial monoids,
which exists because of Proposition [2.29

Definition 3.23. For every (I,0) € Wq, let T'1 5 = (Ku)uev; , be a family of simplicial
monoids K, < Ny such that

® 15, A1,.Cro = Uuer, , K, and this union is disjoint,

e CF(K,) < CF(E,) for allue U.

Ezample 3.24. Let (I,0) = (,21). Then m, = 4 and E, contains all tuples
(ri,7m9,51,71) € Ng such that 71 + 2ry — sy — 1 = 0. Moreover, A7, = & and
Cro = {2,3,4}. It follows that Ig, A;,.c;, contains all tuples (r1,72,81,71) € N§
such that 2ry — sy — 1 = 0 and 71 = 0. One possible I';, = {K,, | u € U} is the
following family (Ko, K1, Ka, K3):

Ko ={(0,0,0,0)},

K, ={(0,72,51,0) eNg | 2r9 — 51 = 0},

Ka = {(0,r2,0,7) € Ng | 2ro — 71 = 0},

K3 = {(0,12,51,71) € N§ | 2r9 — 81 — v = 0},
where K3 is simplicial because it has quasigenerators (0,1,2,0) and (0, 1,0, 2).
3.4. The monoid E, o < Nngle. We define a monoid E, , < Nngle, again via

a matrix @, ,. We list its completely fundamental elements, define a specific subset
Ey and describe a specific triangulation of the cone Cg, , generated by E, ...

Definition 3.25. Let @, be the 1 x (d + d' + 1) matrix
(3.7) Do, = [00972) 1,2, (—1)@+D)],
Let Eyo < Ng+d/+1 be the monoid Eg, , as in (2.4)).

Recall from Remark [2.15]that the convex cone Cg, , generated by Ei, . is a pointed
convex polyhedral cone. The completely fundamental elements of E,, each lie on
an extreme ray of Cg, . Therefore by Theorem the completely fundamental
elements of Ey, correspond to the minimal (non-empty) supports in L(Ey,. ). By
(3-7), we see that the minimal (non-empty) supports in L(Ey.,) are

(3.8) {i} for i € [d — 2];
(3.9) {d—1,i} foried+ [d +1];
(3.10) {d,i} foried+ [d +1].
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For i € [d+d +1], let §; € Ne*¥+1 be the ith unit basis vector. The 2d’ +d completely
fundamental elements of E}, , are the following:

(3.11) ;i for i e [d—2];
(3.12) dg—1+06; foried+[d +1];
(3.13) 8qg +20; foried+[d +1].

Special attention will go to one specific completely fundamental element, namely
0d + 20d+d/+1-

By Theorem 2.18] the 2-faces of Cp,, can be found by looking at the elements
of L(E,,.) that contain at least one of the sets in - yet do not strictly
contain any non-empty elements of L(E, , ) that are not listed in . We are
especially interested in the 2-faces of Cg, , that contain 4 + 25d+d'+1- The elements
of L(Ey,.) that contain {d,d + d" + 1} and do not strictly contain any non-empty
elements of L(Fy.,.) not listed in — are the following:

(3.14) {i,d,d+d +1} for i € [d — 2];
(3.15) {d—1,d,d+d +1};
(3.16) {d,i,d+d + 1} for i e d+ [d].

Note that the sets {d — 1,d,i,d + d' + 1} for i € d + [d'] are elements of L(FE,.,.), but
they strictly contain the set {d — 1,d,d + d’ + 1}, which is not listed in (3.8)-(3.10),
and therefore they do not correspond to a 2-face. The 2-faces of Cg, , that contain
04 + 2041441 are thus generated by

(3.17) {5d + 20g a7 41, (51} for i e [d - 2];
(3.18) {0d + 204141, 0d—1 + davar+1};
(3.19) {5d + 25d+d’+17 Og + 252} foried+ [d/]

Definition 3.26. Let Cy be the subcone (not a face) of Cg, , generated by the set
{(5z | 1€ [d — 2]} U {5d—1 + 5d+d’+1} )/ {5d + 20; | 1e€d+ [dl + 1]},
and let £y = Cyn Epo..

Remark 3.27. Being generated by d + d’ linearly independent elements of Fy ., Cqy
and Fy are simplicial and have dimension d + d'.

Proposition 3.28 (adaptation of [14, Lem. 4.5.1]). The pointed polyhedral cone Cg,,
has a triangulation T' = (K,,)uey whose one-dimensional faces are the extreme rays of
Cg. . and there is a uw € U with X, = Cp.

n.o.

Proof. Use the algorithm in the proof of [14, Lem. 4.5.1], while ordering the extreme
rays generated by each of the elements of (3.26]) that are not d; + 2044 441 first. O

Remark 3.29. By definition, Cy contains all 2-faces of Cg, , that contain d;+204+ 4 +1-
Therefore in the triangulation I'" from Proposition [3.28] the faces of €y are the only
elements that contain dg + 264411

3.5. The subsets H; ; < Nngd/. We define subsets Hy ; < Ngﬂl/ for every I < [d—1]
and J € [d' — 1]. These subsets are used in Section to write down a formula for

Cf2 d(l’ ( )
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Definition 3.30. For every I < [d — 1] and J < [d' — 1], let Hy ; be the set of tuples

(r,s)e Ng*d/ that satisfy the following equations and inequalities:
(3.20) r; >0 foriel,

(3.21) ri = for i e [d—1]\I,
(3.22) {sj>0 for j e J,

(3.23) 55 = for j e [d —1]\J,
(3.24) rao1+2ra— Y1 552 0.

Ezample 3.31. Let d = 2, I = {1}, and J = 4. Then Hj ; is the set of tuples
(ri,7m9,51) € Ng such that r; > 0 and r1 + 2r9 — 51 = 0.

Just as Proposition [3.22)described G, as a set of the form I, a ¢, we now describe
the sets Hy j as sets of the form I, a.c.

Definition 3.32. For every I < [d — 1] and J < [d' — 1], let A; s and Cf; be the
following subsets of [d + d' + 1]:
ALJ::IU(d-i-J),
Cry=ITu(d+J)u{dd+d,d+d +1}.

Ezample 3.33. Let d = 2, I = {1}, and J = J. Then Ay = {1} v J and
Capg = {1} v @ u{2,3,4}.

Proposition 3.34. Let pr : — N4 pe the projection map which ignores
the last coordinate. For every I < [d— 1] and J < [d' — 1], restricting this projection
map to the subset Ig, , A;;cr; S Eno S NAtd'+1 pesults in a bijection between
IEnAonAI,chl,J and HI,J'

Proof. Suppose that (r,s,v1) € Ig,, a,,c;,- Then is satisfied because I <
Ar,y and is satisfied because ([d — 1\I) n C1; = &. Also is satisfied
because (d + J) < Ar,; and is satisfied because (d + ([d' —1]\J)) n Cr,; = &.
Lastly follows from the definition of ®,,.. Thus (r,s) € Hr ;.

Suppose that (r,s) € H;j. Let v1 = rqg_1 + 2rqg — Z;-llzl sj. Then (r,s,71) €
I, A, Moreover, this is the unique element v; € No such that (r,s,v1) €

Nd+d/+1

. d/
Ig, . .A; ;.01 S Eno., because if (r,s8,7) € Eno., then rg_1 + 2rg — Zj:1 sj—vy1 =0.
O

Remark 3.35. Note that

EH.O. = U IEnAo.yAI,chI,J’
I€[d—1],J<[d 1]

and this union is disjoint.
We record the following reciprocity result for the generating functions Hy j(X,Y).
Proposition 3.36. Let K < [d — 1] and L < [d' — 1], then

oo H (XY = (-t D XqYy Hr 1 (X, Y).
Ic[d—1],I2K, Ic[d—1],I2[d—1]\K,
Jeld'—1],J2L Jeld' —1],J2[d'-1\L

Proof. By Proposition and ((2.12)),

HI,J(XilﬂYil) = IEn.o.,AI,J,CI,J(XiaYilv 1) = Z FEn.o.,B(XiaYilv 1).

BeL(En.o.),
A],JQBQCLJ
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Therefore summing over I 2 K and J 2 L results in

Z HI’J(X_I’Y_I) = Z FEn.oAyB(X_I?Y_:L?]‘)'
IDK,JoL BeL(Eno.),Ax,1<B
Note that any subset of [d + d’ + 1] that contains d and d 4+ d’ is an element of the
lattice of supports L(En..). In particular, [d +d' + 1]\Ak,, is an element of L(E, ).
Therefore, we may use Corollary to obtain
Y H XY )= () Y Fy XYL,
I2K,J2L DeL(Eno.),
Dold+d +1\Axk, L

The dimension of E, .. is d + d’ because it is a subset of N¢*¢+1 sybjected to one
linear equation. If D € L(E,,.) with D 2 [d + d’ + 1]\Ak 1, then there are unique
subsets I € [d — 1] and J < [d — 1] containing [d — 1]\K and [d" — 1]\L respectively
such that D = Cr ; and vice versa. Thus

Z HI,J(Xﬁl,Yil) = (—1)d+d/ Z FEH,O,,CLJ(X,Y, 1).
I2K,J2L [2[d—1]\K,
Jo[d—1\L

It is easy to verify that for I < [d — 1] and J < [d' — 1], the map

FEnlo‘,CI,J I H[“] : (al,...,ad,bl,...,bd/,z) > (al,...,ad— 1,b1,...,bd/ — 1)
is a (well-defined) bijection. Thus
Fpg,o.cr, (XY, 1) = XYy Hy 5(X,Y). O

3.6. Dyck words and the relation between H; ; and G ,. We associate a Dyck
word w, to permutations o € Sop. Afterwards, we describe how the sets G, and
Hi j are related.

A Dyck word of length 2d' is a word w in the letters 0 and 1 such that 0 and 1
each occur d’' times in w and no initial segment of w contains more ones than zeroes.
For example, 001011 is a Dyck word of length 6, whereas 011001 is not as the initial
segment 011 contains more ones than zeroes. We write Doy for the set of Dyck words
of length 2d’. The Dyck word 0919 € Doy is called the trivial Dyck word of length
2d'.

Definition 3.37. Let o € Sog. The Dyck word w, associated with o is the Dyck word
of length 2d’ where for each i € [2d'], the i-th letter of w, is 0 if (i) > d' and 1 if
o(i) <d.

Ezample 3.38. Let d = 3 and o = 451623 € 8¢. Then w, = 001011 = 021012.

Remark 3.39. Note that w, is indeed a Dyck word because o € Sop. It would not
necessarily be a Dyck word if ¢ was a general permutation in Sy .

The following proposition links the sets G, and Hy ;. Recall the definition of J,
in Definition

Proposition 3.40. Let I < [d—1], J < [d' — 1], and
S1.7:={0 €8 | (I,0) e Wy, Jy = Jwy = 0414},
Then Hy j = UUGSI I G and this union is disjoint.

Proof. Suppose that 0 € 87 7 and (r,s) € Gy ,. Then (3.20) and (3.21)) hold because
of . and (3.4] Usmg Proposmon 3 19} we find that 3.22) and 3.23)) hold. Lastly,
- holds because is what (3.6|) reduces to When Wy = o4 ld and 1 =d'. Thus
(’I“, S) e H 1,J
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Conversely, suppose that (r,s) € Hr ;. Let o € Sy be the unique permutation
such that
d/

d d
),373 + 2 Vo d+]8] Z Vo(i+1),575 + Z Vo (i+1),d+j5j

||M&

for every i € [2d’ — 1] and o(i) > o(i + 1) if equality holds. The inequality
implies that {o(i) | i € [d']} = d' + [d'] and {o(i) | i € d' + [d']} = [d'], therefore
w, = 0717 Tt also follows by this fact and the construction of o that o € Sop. Also
(I,0) € Wog because if r is non-zero, then it is a non-zero solution to , and if r
is zero, then I = ¢, o(i) = 2d' + 1 — i for i € [d'], and §4 is a non-zero solution to
. If j € Jy, then summing the right-hand side minus the left-hand side of
over all i € [071(j),071(j + 1) — 1] results in s; > 0. Therefore J, < J. Similarly if
jel[d— 1]\,](,, then summing the right-hand side minus the left-hand side of over
allie [o71(j + 1),071(j) — 1] results in —s; > 0. Therefore [d' — 1|\J, < [d' — 1]\J
and we conclude that Jy = J. Obviously (3.3 . and . hold because of @D and

(3-21). Moreover, and (3.6)) hold by construction of o. Thus (7, s) € G/ .
The disjointness follows from the definition of G 4. U

4. THE SUBALGEBRA ZETA FUNCTION OF fa 4

The main result in this section is Theorem which gives an explicit formula for
Gty 4(0)(8). The remainder of the section works towards proving this formula.

4.1. An explicit infinite sum formula for (, ,)(s). First, we derive Proposi-

tion which provides an explicit infinite sum formula for ¢, ,o)(s). It consists of

. . . 4 .
an infinite summation over a subset of Ng+d with d' := (‘21), where each summand

is a product of Gaussian binomial coefficients and a power of ¢,. Recall that P,
is the set of integer partitions of at most n (non-zero) parts, i.e. the set of tuples
A = (Mi)ie[n) € N with A; = A\i1q for i € [n — 1]. We start by associating a partition
wy of length d’ with every partition X\ of length d.

Definition 4.1. Given X € Py, let py € Py be the integer partition (1)
the multisets {y; | j € [d']} and {\; + \y | i <’ € [d]} coincide.

je[a] such that

Informally speaking, the integers uq,...,us are the integers \; + Ay brought into
non-ascending order.

Ezample 4.2. If A = (3,2,2,0), then puy = (5,5,4, 3,2,2).
Recall that A" := (M)iefn] € P and |(Ad)icpny] = Sy A
Proposition 4.3. For all d € Nso and ¢cDVR o,

(4.1) <f2 d(ﬂ Z 2 a ()‘(1”)’ A 0) Oé(,d)\, v; 0)q0—5|/\|qu—s)\u|7

AePq veD vy
where a(\, p;0) is discussed in  Section |2.2.1}

Proof. Recall that, as an o-module, f2 4(0) is generated by {z; | i € [d]} U {[x;, x}] |
i,7 € [d]}. Let £1 be the rank-d submodule generated by {x; | i € [d]} and Ly be the
rank-d’ submodule generated by {[z;, z;] | 7, € [d]}. Hence fo 4 = £1 ® Lo.

Given a submodule A < 3 4(0), we associate two submodules Ay and Ay of £ and
Lo respectively. The second submodule, Ay, is A n Lo, while the first submodule A;
is the unique submodule Ay < £ such that (A1 @ £L2)/(£1) = (A)/(£1). This way A
is not necessarily equal to A; @ Ao, but it always holds that the index |f3 4(0) : A| is
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|£1 : Aq] - |L2 : Ag|. The condition that A is a subalgebra of f, 4(0) is equivalent to
[A1,A1] being a submodule of Ay. It follows from [8, Lemma 6.1] that

_ d—
Gaa@)(8) = D1 D0 161 M| Lo Aol
A<L1 Aa<lo
[A1,A1]<A2
Recall Definition [2.8| of the elementary divisor type €(A) of a submodule A. We write
the zeta function as a sum over the elementary divisor type of Aq:

Go.ato)(5) = Z Z (L1 s A Z |Lo : Ag| ™5,

APy Ar1<Ly Ao<Lo
e(A1)=X [A1,A1]<A2

Let A be the elementary divisor type e(A1) of Ay < £;1. Then {m%™ | i < j e [d]}
yields the elementary divisor type of [A1, A1] < L3. Thus by Definition He(ay) 18
the elementary divisor type £([A1, A1]) of [A1, A1] < Lo. When counting submodules
Ay < Lo that contain a given submodule [A1, A1], the only thing that is important
is the elementary divisor type of the given submodule [A;, A1], see Proposition
Since the elementary divisor type of [A1, A1] is completely determined by (A1), we
can conclude that counting submodules Ay that contain a given submodule [Aq, Aq]
is also completely determined (A1) = A. Therefore, the last two summations in
are independent counting problems, connected by the elementary divisor type of Aj:

(4.2) Gaa)() = D | D0 1617 P ER. Vi

AePy A <Ly Aa<Lo
e(A1)=X My<Ao2
where M) is any submodule of £o that has elementary divisor type p).
The first counting problem (the first brackets), pertains to counting submodules
A1 < L7 with fixed elementary divisor type. The solution to this first counting
problem is discussed in Proposition The result in this case is

Ser s Al = aAY, As)gs .
A1<Ly
e(A1)=X
The second counting problem (the second brackets) pertains to counting submodules
Ao < Lo that contain a given submodule M) of which we know the elementary
divisor type, namely py. The solution to this second counting problem is discussed
in Proposition and the result in this case is

d— d—s)|v
Z | Lot Ag|®7% = Z a(,u,\,y;o)qg ol O
Ao< Lo l/Ede/
My<Az U<y

The formula for ¢, ,(,)(s) in Proposition is explicit, however not closed since it
contains infinite sums. In the following sections, the formula will be written as a finite
sum, where each summand will be a product of Gaussian multinomial coefficients and
a substitution of a series of the form (2.5). This will make the formula amenable to
computer algebra systems capable of enumerating integral points in polyhedra.

4.2. The factor a(uy,v;0) in terms of o) ,. We associate a permutation oy, €
Soqr with each pair (A\,v) € Py x Py. Afterwards, we rewrite the factor a(uy,v;o0)
that appeared in as a product of a power of ¢, and a product of Gaussian
binomial coefficients that depends only on o) ,. Recall the definition of the map b
in Definition
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Definition 4.4. Let A € Py and v € Py. Then oy, is the permutation o € Syy defined
inductively as follows. Consider the multiset ¥ = {\; + Aj}icje(q) U {Vi}icja]- Let o(1)
be the maximal b-value among the indices of the elements of ¥ which are maximal.
Now assume that ¢ > 1. To find o (i), consider the subset of ¥ comprising the elements
whose indices have an image under b that is not yet in {o(j) | j < i}. Let o(i) be the
maximal b-value among the indices of the elements of this subset which are maximal.
Ezample 4.5. Let d = 3, A = (5,4,1), and v = (6,2,2). Then \; +X2 = 9, A\; + A3 = 6,
and A\g+ A3 = 5, thus ¥ = {9,6,5,6,2,2}. Clearly, A\; + Ay = 9 is the (unique) maximal
element of ¥. Therefore o(1) = b((1,2)) = 4. Among the remaining elements, both
A1+ A3 = 6 and v; = 6 are maximal. Of the two, the index of A\; + A3 has a greater
image under b, whence o(2) = b((1,3)) = 5. Among the remaining elements, v; = 6 is
maximal, whence o(3) = b(1) = 1. Continuing in this way, we find that o, = 451632.

Recall the definition of the set 894 in Definition
Remark 4.6. Let A € Pg and v € Py. Then v < py if and only if o), € Saqr.

Next, we define integers L;(o) and M;(o) for all o € 894 and j € {0} U [2d’]. These
are related to the integers M; and L; from Definition [2.4] as is partially discussed in
the proof of Lemma [4.9]

Definition 4.7. For o € 894 and j € {0} U [2d'], define Ly(o) := 0, My(0) :=

Li(o) :==#{c(i) | i€ [j]} n (d + [d]) for all j € [2d'],
M;j(o) = #{c(i) | i € [§]} n [d'] for all j € [2d'].
Ezample 4.8. Let d = 3, 0 = 451623 € 8¢, and j = 3. Then L3(o) = |{4,5,1} n

{4,5,6}] = 2 and Ms(c) = |{4,5,1} n {1,2,3}| = 1.

Recall that Asc(o) := {i € [2d'] | o(i) < 0(1 + 1)}. The following lemma writes the
product of Gaussian binomial coefficients in in a way that only depends only on
O, using the integers L;(o) and M;(o) from Deﬁnition

Lemma 4.9. Let A € Py and v € Py be integer partitions with v < uy. Let o :=
Oxy € 8aa and Mj and Lyj be as in Definition 2.4 with p = py. Let r := |Asc(o)| + 1
and {j; | i € [r — 1]} := Asc(o) with j; < jiy1 fori € [r —2]. Moreover, set jy := 0
and j, := 2d'. Then
I (LJ_Mj—l) 11 (Lji(ff)—Mju(U)> '
je[2d'] Mj — M @' ielr] Mj, (o) = Mj,_, (o) at
Proof. For i € [r], let k; be the smallest element of (j;—1, j;] such that my, = my, 11 =
- = mj,. It follows directly that Ly, = Lg,41 = --- = Lj; and My, = My, 41 =
- = Mj,. Tt also follows that my,_1 > my,. We claim that M;, , = M;, 41 =---=
My, 1 as well. Indeed, suppose that M; # M;q for some j € [ji—1,k; — 1). Then
m; > mj41 and there is a v, with v; = mj41, that is, there is a j' € [j + 1, k;) with
o(j') = 1 € [d']. By construction, mji1 = my,_1 > my, = m;,, thus we find that
m; > mji1 = v > mj,. Both if o(j;) € [d'] or o(j;) € d' + [d'], this implies that
there is an ascent of o in the interval [j + 1, 7;), which is a contradiction. Thus, we
showed that the factor corresponding to j € [2d'] in is one for all j € (k;, ;] and
J € (ji—1, ki) with i € [r]. The remaining factors are

(4.3) <Lki - Mki—1> _ <sz‘ - Mjil)
My, — My, ! Mj, — Mj,_, !t
for all ¢ € [r]. If j; € Asc(o), then m;, > mj,41 and therefore L;, = Lj, (o) and

M;, = Mj,(0). The same conclusion holds for jo, = 0 and j, = 2d’. Thus (4.9)
holds. 0
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The following proposition writes the factor a(uy,v;0) in (4.1) as a product of a
power of ¢, and a product of Gaussian binomial coefficients that depends only on o) ,.

Proposition 4.10. Let A € Py and v € Py be integer partitions with v < uy. Let
o = oz, and write {m; | i € [2d']} = px U v with m; = m;yy for all i € [2d'] as
in Definition [2.4l Then
Lj,(0) = Mj,_, (o) S jefzary Mi (@) (L;(0)=M;(0)) (m;—mjs1)
alpa,vio) = ( ; ’ %" :
2-1;,!] Mji(a)_Mji—l<0) )

Proof. Recall the formula for a(suy,v;0) in (2.3). Lemma [4.9rewrites the product of
Gaussian binomial coefficients in ([2.3)) as the product of Gaussian binomial coefficients

in (4.10). That the power of ¢, in (2.3) equals the power of ¢, in (4.10) follows from
the fact that mj; = mj;q if Lj # L;(o) or M; # M;(o). O

4.3. Partitioning the infinite summation into a finite number of parts. The
formula for G, ,,)(s) in Proposition is an infinite sum over the pairs (\,v) €
Pq x Py that satisfy v < p). We partition this infinite sum into a finite number
of summations indexed by the elements of the set W, from Definition More
precisely, the infinite number of summands indexed by the elements of Ay := {(\,v) €
Pax Py | v < py} are partitioned by the finitely many fibres of the following map w.

Definition 4.11. Define the map
w:iAg = {()\’I/) € Pax Py | v <M)\} — Wy : ()\’I/) HW()\,V) = (170-)7
where I = {i e [d—1] | A\; > Ai+1} and 0 = 0, as in Definition

Ezample 4.12. Let d = 3, A = (5,4,1), and v = (6,2,2). The first component of
wA\,v)is I ={1,2}, as A\ =5 > Xy =4 and Ay = 4 > A\3 = 1. By Example [4.5]
oxy = 451632. Thus w(A,v) = ({1,2},451632)

Remark 4.13. The map w is surjective by design of Wy.

Remark 4.14. One motivation for defining the map w from Definition is that
the Gaussian multinomial coefficients in only depend on the image w(\,v) =
(I,0). This allows for the Gaussian multinomial coefficients to be pulled out of the
summation over A and v, see .

Next, we show that the elements of the fibre w™!(I,0) of w are in bijection with
the elements of the set G, from Section

Definition 4.15. For integer partitions A € Py and v € Py, define

ri:)\i_>\i+1 for allie[d—l], T’d:)\d,

Sj = Vj —Vj41 for allje[d’—l], Sqr = V.
Ezample 4.16. Let d = 3, A = (5,4,1), and v = (6,2,2). Then r; =5 —4 =1,
ro=4—1=3,13=1,51=6—2=4,50=2—-2=0, and s3 = 2.

Recall the definition of the corresponding tuples v; in Definition [3.6]

Lemma 4.17. Let A € Py and v € Py be integer partitions with v < uy. Let
o = oy, and write {m; | i € [2d']} = px U v with m; = miqq for all i € [2d' — 1] as
in Definition |2.4. Then

d d

m; = Z Vo(i),jT5 + Z Yo (i),d+555-
j=1 j=1
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Proof. Suppose that i € [2d'] is such that o (i) € [d']. Then v, ; = 0 for j € [d] and

d d
M= Vo) = D, 855= ), Voli)d+i®
j=0o(i) j=1

Suppose that i € [2d'] is such that o (i) € d’ + [d'] and let b~ (o (7)) = (I,m) where b
is the map from Definition Then v, () 4+, = 0 for j € [d'] and

Proposition 4.18. Let (I,0) € Wy. The map
wHI,0) = Gryp: (\v) = (r,8),
where r = (ri)ie[d/] and s = (si)ie[d/] are as in Deﬁm’tz’on s a bijection.

Proof. We first show that the map is well-defined. Let A € P4y and v € Py be integer
partitions with v < py and w(\,v) = (I,0). Since X and v are integer partitions,
we have that 7; > 0 and s; > 0 for i € [d] and j € [d']. The (in)equalities and
follow from the definition of I in Definition as{ie[d—1] | A\; > N\i+1}. Let

{mi |ie[2d']} = purvv with m; = m;q; for all i € [2d' —1] as in Definition Then
(3.6) holds by Lemma Moreover, from the definition of ¢ in Definition it

follows that m; > m;+1 when i € Asc(o), and therefore using Lemma
holds. Thus (7, s) is indeed an element of G, and is well defined.
Suppose that (r,s) € Gr,. Let \; = Z;l:i rj and v; = Z;ll:l sj. Then A\; = \j;1 and
vj = vj1 because 15,5; = 0 for all i € [d — 1] and j € [d' — 1]. Let {m,; | i € [2d']} =
gy U v with m; = m;4q for all i € [2d" — 1] as in Definition Combining and
with Lemma we find that o), = o and therefore v < py by Remark
Lastly, and (3.4) imply that A\; > A;jy1 for all ¢ € I and A\; = A\;y; for all
i € [d—1]\I. Thus ()\,v) is an element of w™!(I,s) that gets mapped to (r,s),
proving that is surjective. The injectivity is trivial. O

(3.5)) also

4.4. An explicit finite sum formula for ¢, ,)(s). In Theorem we reach
the main result of Section It writes the subalgebra zeta function (j, 2(0)(8) as a
finite sum indexed by the elements of Wy, whose summands are a product of Gaus-

sian multinomial coefficients and a substitution of a generating series of a set Gy,
from Section [3.21

Definition 4.19. Let (I,0) € Wy and {j; | i € {0} U [r]} := Asc(o) U {0,2d'} with
Ji < jiy1 for all i € {0} U [r]. The product of Gaussian multinomial coefficients
GMCy, associated with (I,0) is

e, - (7) L <JLWJQZ(<?>:AA21(<?>>“ <2l

Ezample 4.20. Let d = 3 and (I,0) = ({1,2},451623). Then

3 1-0 2-0 3-1 3-2
GMCI,J - ({17 2}>q_1 <0 — O> ! (1 — 0) g1 <2 — ]-> g1 (3 - 2) q_l-

Let g and t be indeterminates and X = (X;)e[q and Y = (Y})je[a be tuples of
indeterminates.
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Definition 4.21. Let o € 83¢. Define z;(0),y;(c) € Q(q,t) to be
zi(0) = qZke[Qd’] My (o) (L (0)=My(0) (Vo (k)i —Vo (k+1),i) . qi(d—i) 4 forie [d],

(4.4) yj(a) = qZke[gd/] My (o) (Lg(0) =Mk (0)) (Vo (k),d 4§ Vo (k+1),d+5) 'qjdtj for j e [d/],

where v, (20 41),; = 0 when i € [d + d']. The numerical data map x, is
o1 QX Y) = Qq,t) : X = xi(0),Y; — y;(0).
Ezample 4.22. Let o = 451623 € 8¢ and ¢ = 1. Then v,(1)1 = vy2)1 = 1 and
Vo(ky1 = 0 for all k € {3,4,5,6}. Thus
21(0) = @PU=0(=D+02=0)(1-0)  1B3=1) 41 _ 32y
Similarly, let j = 1, then v,(3)4 = 1 and v,() 4 = 0 for all k € {1,2,4,5,6}. Thus
(o) = QPEO0O-D+E=DA-0) 1341 _ 4y
Remark 4.23. Notice that, for each ¢ € [d], the first exponent appearing in (4.4]) can
be rewritten as
D1 (My(0)(Li(0) = Mi(0)) = My—1(0)(Li-1(0) = M—1(0))) Vo () 5
ke[2d']
Given i € [d], vy (k),; can only be non-zero if o(k) > d'. In that case, Ly_1(0) < Ly(o)
and My_1(o) = My(o) and therefore My (o)(Lg(0) — My(0)) — My—1(0)(Lg—1(0) —
My.—1(0)) is non-negative. It follows that (4.23) is non-negative as well.
Recall that G, (X,Y) is the series enumerating the elements of G . Let ¢, ,(q,t)
be the bivariate rational expression in Q(g,t) such that (j, ,(go, g, °) equals the p-adic
zeta function ¢y, ,(0)(s) for all cDVR o. The following is the main result of Section

Theorem 4.24. For all d € N>,

(4.5) Goala:t) = Y, GMCroxo(Gro(X,Y)).
(I,a)er

Proof. By Proposition we may write

(46) G ()= 2 2 2 a(kgn),k;tv) ajr, v; 0)gy gl M,

(1,0)eEWg AePyq veP yv<py,
wA\v)=(I,0)

Corollary [2.7] with n = d tells us that

d d i(d—1)(Ai—X;
(4.7) o (AP x0) = <I> a0,

=1
For integer partitions A € Py and v € Py with v < uy, let

(4.8) Dy, = qZ]’e[Qd’] Mj(U)(Lj(U)*Mj(a))(mj*mjﬂ)ngzl i(d=i)(Ai=Air1) 4|l (th)|V|7

where 0 = 0y, and {m; |t € [2d']} = py U v with m; = m;;q for all i € [2d — 1] as

in Definition Using (4.7)) and Proposition in (4.6]) results in

(49) sz,d (q7 t) = Z GMCI,U Z Z D)\,V'
(I,a)er AePy l/Ede/,I/S;,LA,
w\v)=(1,0)

It now suffices to show that for each (I,0) € Wy,

(4.10) Y0 D Da=xe(Gre(X,Y)).

AePy VGTd/ NAYTHW
wrv)=(I,0)
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By Proposition the summands on the left-hand side of (4.10)) are in bijection
with the elements of G, and it suffices to show that

d d’
(4.11) Dy, = (H m(o—)") <Hyj<o—>8j> ,
i=1 Jj=1

where the r; and s; are as in Definition The D), in (4.8)) are written as a
product of four powers of ¢, which we analyze in turn.
(1) The first power of ¢ has exponent >, 1 M;(0)(L;(0) — Mj(0))(m; —mjt1).
It follows from Lemma [4£17] that
d d'
(412)  mp = M1 = Y (Vo) = Vo(er1))Ti + D (Voikydss — Volkr1)d+s)Sin
i=1 J=1
for all k € [2d'], where vy (24/41),; = O for each i € [d+d']. We may thus rewrite
this first power as

d )
(4.13) (H (qzke[Qd’] Mk(”)(Lk(U)_Mk(U))(”c(km_”o(kﬂ),i))n> - nonumber
i=1

d )
(H <q2k5[2d’] Mk(0)(Lk(0)—Mk(0))(Ua<k),d+j—va(k+1),d+j)>SJ> )

j=1

(2) The second power q is easily rewritten as follows,

d ) d
(4.14) i A=) Ni=Xi1) (H <qi<d—z‘>>”> (H (1)5].) .
j=1

i=1

(3) The third and fourth powers of ¢ can be written as

(4.15) g gld=9)lvl — (ﬁ (tz‘)m) (ﬁ (detj>sf> .

i=1 j=1

The product of (4.13) with the right-hand sides of (4.14)) and (4.15|) indeed results in
@.11). 0

5. OVERLAP TYPE ZETA FUNCTIONS, FUNCTIONAL EQUATION AND POLE AT ZERO

In this section, we present results on the p-adic zeta function ¢, ,o)(s). In Sec-
tion we introduce the overlap type zeta functions ng(o)(s) for each Dyck word

w € Doy, which are special summands of sz, d(o)(s). Special attention goes to one
overlap type zeta function called the no-overlap zeta function. Informally and purely
heuristically speaking, it enumerates “most” of the subalgebras of f2 4(0). Theorem|5.9
establishes a functional equation for the no-overlap zeta function, while Theorem [5.11
proves that it has a simple pole at zero. In Section [5.5| we prove that the p-adic zeta
function G, d(a)(s) has a simple pole at zero as well, confirming a conjecture of Ross-
mann in the relevant cases; see Theorem [5.13

5.1. Overlap types and overlap zeta functions. We define the overlap type w(h)
of a subalgebra b < f3 4(0) of finite index and define an overlap type zeta function
Cfg”d(u)(s) for each overlap type w, which enumerates the subalgebras of f; 4(0) with

that overlap type. Afterwards, we slightly adapt Theorem to a formula for each
overlap type zeta function C}};’d(o)(s).
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Recall from Section that Doy denotes the set of Dyck words of length 2d’
and w, is the Dyck word associated with o. Recall, moreover, the permutation oy ,
associated with (A, v) from Definition

Definition 5.1. Let b be a subalgebra of f 4(0) of finite index. Let A be the elementary

divisor type of b/[f2,4(0),f2,4(0)] in f2.4(0)/[f2,4(0), f2,4(0)] as in Definition Let v
be the elementary divisor type of b N [f2.4(0),f2,4(0)] in [f2,4(0),f2,4(0)]. The overlap
type w(h) of b is the Dyck word wg, , € Dagr.

We say that h has no overlap if w,, , is the trivial Dyck word 0717, Equivalently,
b has no overlap if and only if uy > -+ > py = v1 = -+ = vg where (p5)je[a] = pr
as in Definition [4.1} This is equivalent to the valuations of the elementary divisors of
[f2,a(0), f2.a(0)]/(h N [f2,4(0), f2,4(0)]) all being less than or equal to all the valuations
of elementary divisors of [f2 4(0),f2,4(0)]/[h, h]. Otherwise, we say that h has overlap.

Definition 5.2. Let w € Dog. The overlap type w zeta function is defined as
Gy ao) (8) i= > [f2,a(0) : b|~*.
h<fa,q(0),w(h)=w
In particular, the no-overlap zeta function is defined as
d’1d’ _
(r;"‘;'(o)(s) = COM%U)(S) = Z [F2,a(0) : B[

h<f2,4(0),w(h) =071
Obviously (j, ,(0)(s) = Zwe%d/ Cf“;‘d(o)(s). These functions may be compared with the
summands Dy, ,(q,t) in [5l, Def. 4.18].

Let C;;’d(q, t) be the bivariate rational expression in Q(g,t) such that ¢! (go,q5 °)
equals C]fg o l’)(s) for all cDVR 0. Theorem {4.24|is straightforwardly adapted to obtain

a formula for the overlap type zeta functions Gia 0)(s) as follows.
Theorem 5.3. For all d € N>g and w € Dog. Then
(5.1) G at) = >, GMCroxe(Gre(X,Y)).

(I,0)eWy
Wo =W

Proof. In the statement and proof of Proposition 4.3} the summation can be restricted
to the integer partitions A € Py and v € Py with v < py and wy, , = w:
—s|A\l (d—
FEoE= > a (AS”), A; 0) o, v; 0)g5 Mgl

AePy, vePy,
VU, Woy , =W

Similarly, in the statement and proof of Theorem [£.24] the summation can be restric-
ted to pairs (I,0) € Wy with w, = w, resulting in (5.1)). O

5.2. An alternative formula for the no-overlap zeta function. We simplify
the formula for C;Q’Jd(o)(s) in Theorem [5.3]in the case when w = 0417 i.e. for the

no-overlap zeta function Cfr;fz'( 0)(3). We start by establishing how the products of
Gaussian binomial coefficients GMCy , simplify when w, = 0417,
Lemma 5.4. Suppose that (I,0) € Wy with w, = 0419, With

Jo={jeld =1]|o7'(j) <o G+ D},

we have

d d
5 ven- () (%)
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Proof. Tf wy, = 091¢ | then My(0) = --- = My (o) = 0 and therefore

<Lji (o) — Mji—l(a)> -1

Mji(g) - Mj,_, (o) g-1

for all j; € Asc(o) n [d']. Moreover, Ly (o) = d and Mg (o) = j for all j € [d'].
Let j; > --- > j, be such that Asc(o) n (d' + [d' —1]) = d + {j; | i € [r]}. Because

o € Sog, it follows that o(d' +j;—1 + k) = ji+1—k for all i € [r] and k € [j; — ji—1 — 1]
where jo = 0. Therefore Asc(o) n (d' + [d' —1]) = d' + J,. Thus
!
(),
1 Jo’ q—l

0 (o eo) -G
jiensetini@ifan) \Mid(@) = M1 (0)) o g Ndi = die1) ¢
Next, we establish what the numerical data map . simplifies to when w, = 0¢1¢.
Definition 5.5. The no-overlap numerical data map xn.o. is
Xno. : QX,Y) = Qg,1) : Xy = ¢ Yy o gBH T,

Ezample 5.6. If d = 3, then xp0.(X1) = ¢"G D! = ¢t and xp0. (Y1) = ¢#1H1G-D¢l =
5
q°t.

Remark 5.7. Let o € 894 be such that w, = 0414, Then the numerical data map Xo
from Definition simplifies to xn.o.-

The following theorem provides an alternative formula for the no-overlap zeta func-
tion (fnzc;( o)(s). It is a lot less complicated than the general formula for the overlap

type w zeta function ng( 0)(s) in Theorem [5.3| because it has fewer summands and
the summands are simpler. Recall the sets H 1,s from Section

Theorem 5.8. For all d € Nxo,

(5.3) (g t) = > e <§l> . (‘;) qilxn.o.(HI,J(X, Y)).

Ic[d-1],Jc

Proof. Using (5.2) and Remark [5.7)in (5.1]), results in
d d
= no.(Gre(X,Y)).
qran= 5 (7) (5) we(Gro0cv)

(I7U)ewd7
wo=0dl1d/
Now using Proposition we find ([5.3)). O

5.3. A functional equation for the no-overlap zeta function. [I7, Thm A]
asserts in particular that (s, , (q,t) satisfies the functional equation

Cf? d(q_17t_l) = (_I)Dq(g)tDsz,d(%t)v

where D :=d+d = (dH) the Z-rank of f3 4. The following theorem determines that
the no-overlap zeta function G "(q,t) satisfies the same functional equation.

Theorem 5.9. For all d € Nxo, the no-overlap zeta function Cg";'(o)(s) satisfies the
functional equation 7

— — D n.o.
o (gt t7Y) = (~1)PgP o (g, 1),
where D :=d+d = (d+1) is the Z-rank of f2 4.
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Proof. This proof follows the proof of [I8, Thm. 2.15] which refers to [I7, Sec. 2 and 3].
We start from the formula for Cfr;";'(q,t) stated in Theorem Using the identity

(2.1) for the Gaussian multinomial coefficients, we find

Go(g,t) = ), ( > q—e(w)>< > q_e(v)>Xn.o.(HI,J(XaY))'

Ic[d—1] weSy, veSy,
Jc[d'—1] \ Des(w)=I Des(v)SJ

Reordering the summations, this becomes

fzd Z q tw) 2 q_Z(U Z Xn.o.(HI,J(XaY))-

weSy veES Y Des(w)cI<[d—1]
Des(v)2J<[d —1]

Inverting g on both sides and using Proposition we find that ¢ (g1, t71) equals
DTN gt Y gt > Xn.o. (XaYa Hr,y(X,Y)).
weESy veS y [d—1]\ Des(w)=I<[d—1]

[@ —1]\ Des(v)cJ<[d'—1]

. . : n.o./,—1 3—1
Using the two equations in (2.1)), ¢, y (g~*,t7") becomes

U U d’ —0(vv
(~1Hd N gt 5 g (5)~Hew) 3 Xno(XaYarHr 5(X,Y)).

weSy VES y Des(wwop)cI<[d—1]
Des(vvg)=J<[d' —1]

Changing the order of summation again results in

sz d (q _l’t_l) :(_1)d+d/qdl+(dz/) Z ( Z q_é(wiﬂo)>
] cI

Ic[d—1] weSy,
Jcld' —1 Des(wwg)<S

[
( Z g~tvvo)

UESd/,

) Xn.o. (Xde/HI,J(Xa Y))
Des(vvg)SJ

Using (2.1) and xu.0.(XqYw) = ¢t yields

(r;"‘;'(qfl,tfl):(—1)d+d/qd/+(g)+dd/ Z (?) <ij]/> Xn.o.(Hr7(X,Y)).
] M/ e

Ic[d—-1
Jcld'—1]
Lastly, using d’ + (dzl) +dd’ = D and Theorem [5.8 yields (5.9)). O

In light of results such as [5, Prop. 4.19], one might expect that the functional
equation established in Theorem might hold for all ng(q, t) where w € Doy, not

just for w

= 0417, Our explicit calculations (see Section @ find that this indeed
holds for d < 4

Conjecture 5.10. For all d € N>o and w any Dyck word of length 2d’, the overlap
type zeta function C]Z;’d(o)(s) satisfies the functional equation

G = (~1)PgEIPE (q.0),

where D :==d+d = (d+1) is the Z-rank of f2 4.
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5.4. The simple pole at zero of the no-overlap zeta function. Next, we study
the behaviour of Cfr;";'(o)(s) at s = 0.

Theorem 5.11. The no-overlap zeta function Cg";’(o)(s) has a simple pole at s = 0
for all but finitely many q,. 7

Proof. We start from the formula for ng(q, t) stated in Theorem Let I < [d—1]
and J < [d' —1]. Propositionimplies that Hr ;(X,Y) = Ig,, 4;,,0.,(X, Y, 1).
Let I'r y = {Ky | uw € Uz s} be a family of simplicial monoids, satisfying the conditions
in Propositionwith E=F,,,A= A ,and C = Cr . Using that H; ;(X,Y) =
Ig, . A0, (X, Y, 1) and UueULJ K, =1Ig,, A, ,.c;, in Theorem results in

(5.4) Gro(g,t) = > o Gl>q1 (i)q 1 D Xno(Ku(X,Y,1)).

Ic[d—1],Jc T uelr,y
By Theorem [2.19

N ZBED— Z
(5.5) Ku(Z) = o
[[io (1 —2Z)
where a1, ..., a, are quasigenerators of K, DE is defined in (2.6), and Z =
(X,Y,1). Therefore XH_O,(E(Z))LJH% j—qgrs Das a pole at s = 0 if and only if there

is a quasigenerator v of K, such that xn.0.(Z7) = xn.o. (X" .. .YJ””’/) is a power of t.
Looking at Definition this means that the monomial Z" has to have degree zero
in the variables X1,...,X4_1, Y1,..., Y. Thus the support of v has to be contained
in {d,d+d'+1}. We show that there is a K, that has a quasigenerator whose support
is contained in {d,d + d' + 1}.

For each i € [d+ d' + 1], let §; € Ng”/“ be ith unit basis vector. As discussed
in Section[3.4] 04+2044q+1 is a completely fundamental element of E,, . and therefore
by Proposition [2.29] it is a quasigenerator for some of the K. There cannot be more
than one quasigenerator of Cg, , with the same support and thus the multiplicity of
the pole at s = 0 of xp.o. (E(qu—»qo,t—w;s is at most one. The order of a pole of a
sum is at most the maximal order of the poles of the summands. Therefore by ,
Cfl;z'( 0)(s) can have at most a simple pole at s = 0 (the Gaussian binomial coefficients

do not depend on s and therefore they have no poles or zeros).
It remains to show that the residues of the summands in ([5.4) do not cancel each
other out except for possibly finitely many ¢,. To that end, it suffices to show that

d d —
(5.6) ( ) ( ) s S xno (Ka(Z))],.. .
Z [d/—1] 1) i \JJ g1 520 o

Ic[d-1],J< uelr, g

is a non-zero rational expression in ¢ multiplied by log q. The Gaussian multinomial
coefficients are polynomials in ¢~! with non-negative coefficients. By the reason-

ing earlier in this proof, Xn,o.(E(Z))LJHq fgoe CAn have at most a simple pole at

s = 0. If it has no pole, then lims 08>,y , Xn.o. (Kiu(Z))L_)q_s is zero. Otherwise,
(5.5) shows that the numerator of xy.o.(Ky(Z)) is a polynomial in ¢ and ¢ with non-
negative coefficients. It also shows that the denominator of xy .. (K, (Z)) is a product
of dim K, polynomials of the form (1 — ¢%t®) with a,b € Z. Because we assume that

Xn,o,(fu(Z))’qumtﬁq;S has a simple pole at s = 0, exactly one of these factors has

a = 0. Therefore multiplying the denominator by s~! and taking the limit s — 0
results in log ¢ multiplied by a product of polynomials of the form (1 —¢%). Thus in
this case, lims_.q sZueUI J Xn,o.(Ku(Z))|th_S is a non-zero rational expression in ¢
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multiplied by log q. Thus we find that is indeed a rational expression in ¢ multi-
plied by log q. To show that it is non-zero, notice that when evaluated at ¢ = %, both
the Gaussian multinomial coefficients, the numerators and the factors (1 — ¢) in de
denominators of the limg_,q SZUeUI’ ; Xno. (E(Z))\ tg-s BT€ non-negative numbers,
while log1/2 is a negative number. Therefore the summands in all have the
same sign when evaluated in ¢ = 1/2 and cannot completely cancel out. O

5.5. The simple pole at zero of the overlap and subalgebra zeta functions.
We study the behaviour of ¢, ,)(s) at s = 0 by first looking at the behaviour of

Chaa(o)(8) = G%o)(8) at 5 = 0.

Theorem 5.12. The rational function (g, ,()(s) — Cfr;'(;'(o)(s) does not have a pole at
s =0. 7

Proof. Since (j, ,(0)(s) — Qﬁ"fl'(o)(s) = Zwe%d/’wyﬁodxldl C;‘;d(o)(s) it follows from The-
orem [5.3] that

Choa(@:t) = G (q,1) = > GMCy 4 X0 (G10(X,Y)).
(I,0)eW,wo #0414

Therefore it suffices to show that for each pair (I,0) € Wy with w, # 0419 the
rational function x¢(Gr.(X,Y))[, ., j—q Das no pole at s = 0. Recall from Pro-
position that G, can be seen as the projection of I, 4, , c;, on the first d+d’

coordinates, thus G1(X,Y) = Ig, 4;,.0,,(X,Y,1). Let I';; = {K, | ue Urs} be

as in Definition Using that UueUI  Ku=1Ig,4,,0c,, we find

XU(GLO'(X’Y)): 2 XU(E(X7Y71))'

UEU],(7

By Theorem m the denominator of x,(K,(X,Y,1)) when written in least terms
is [i_;(1 — Z*) where a1, ..., a, are quasigenerators of K, and Z = (X,Y,1).

Thus XU(Kiu(Z))]q_)qmt_)q;s has a pole at s = 0 if and only if there is a quasigen-

erator 3 of K, such that XU(XIB1 ...Yd[jd*d') is a power of ¢°. By the definition
of X, in Definition this happens only when the support of 3 is contained in
{dyv{d+d +i]ie][rs]}.

Recall that E, is the monoid associated with the matrix ®, € Mat,_ xm, (Z)
from Definition As wy # 071% | there is an h € [2d’ — 1] such that the h-th letter
of w, is 1 and the (h + 1)-th letter of w is 0. Let 4, j,k be such that o(h) = k € [d]
and b=!(o(h + 1)) = (i,5) € [d]*>. Then ®, has a row

(5.7) [0 (=1)U=D (—2)(d=i+1) olk=1) q(d=k+1) o 0,-1,0,...,0].

Note that has the entry —1 in column d, another —1 in one other column
contained in {d + d +1i | i € [r,]}, and zero in the other columns contained in
{d+d'+i | i € [rs]}. Therefore multiplying the row with 8 could not result in zero
when the support of 3 is contained in {d} u{d+d +i | i € [r,]|}. Consequently, such a
tuple 8 could not satisfy ®,5 = 0, and therefore not be an element of K,, € E,. Thus

we find that x,(K,(X,Y,1))] -5 and by (5.5) also Xo(Gro(X,Y))[, . g

q4—qo,t—q,
cannot have a pole at s = 0.

Theorem 5.13. The rational function Cb’d(o)(s) has a simple pole at s = 0 for all
but finitely many q,.

Proof. Follows directly from Theorem [5.12] and Theorem [5.11} O
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This result confirms the first part of [10, Conjecture IV (PB-adic form)| for the
relevant zeta functions (for all but possibly a finite number of ¢,). (The second
part is known to hold for d € {2,3,4}, by inspection of the explicit formulas; see

Corollary [7.9})
6. REDUCED AND TOPOLOGICAL ZETA FUNCTIONS

We discuss the reduced and topological zeta functions Cfr;j(t) and (;:205(3). Theor-

ems and provide formulas for Cfr;i(t) and Cft;i(s) respectively. Theorem @

establishes that the reduced zeta function C{;g(t) has a simple pole of order (dgl) at

t = 1. Theorems [6.10} [6.13] and [6.14] confirm parts of conjectures from [10] pertain-
ing to the degree and pole at s = 0 of topological subalgebra zeta functions, in the
relevant special cases.

6.1. Preliminary definitions. In preparation, we make a few preliminary defin-

itions. First, we define the counterpart of GMCyr, that we will use to formulate
formulas for C)f;‘di(t) and C;;S(s).

Definition 6.1. For (I,0) € Wy, the product of multinomial coefficients associated
with (I,0) is MCy, := GMCr 4 |g—1-

Second, we define integers a,(a) and b, () for all o € 894 and o € Ni'” that are
closely related to the numerical data map ..

Definition 6.2. Let o € 894 and a € Nij*?. Define a, () and b, () to be the respect-
ively non-negative and positive integers such that x,((X,Y,1)®) = (1 — g% (@)¢bs()),

Ezample 6.3. Let 0 = 21, ay := (0,1,2,0), and as := (0,1,0,2). Then
Ko (5, Y, 1)) = 3, (XOXIVP10) = ('0)°(2)}(¢%0)%10 = g,
Yo (X, Y, 1)%2) = xo (XOXIV012) = (g10)(2)} (¢%)°12 = £2
Thus aq (1) =4, by(a1) =4, as(ag) =0, and b, (a2) = 2.

Recall the definition of I'r , = {K,, | u € Ur,} in Definition Third, we define
a subset Us s max of Ur s and a positive rational number ¢4 for each d € Nxo.

q*t
q*t

Definition 6.4. For each (I,0) € Wq, let Us s max be the set of u € Ur, such that
dmK, =d+d = (dﬂ). Let ¢4 be the positive rational number

2
| D]

(6.1) cgi= Y, MCr, Y,

)
(I,0)eWy uEUT 5 max [Loecrrr,) bo(a)

where Dz is defined in (2.6)).

Remark 6.5. Although it is not a priori clear, ¢4 does not depend on the family
I'1o = {Ky | uweUrgy} of simplicial monoids, but only on d. This is a consequence
of Theorem [6.8

We cannot offer a conceptual interpretation of c4. Its values for d < 6 are tabulated
in Table [6.1]

d]2 3 4 5 6
c ‘ 3 25 569 3800243 8743819
d |2 54 2304 32400000 172800000

TABLE 6.1. Values of ¢4 for each d € {2,3,4,5,6}.
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6.2. Reduced zeta functions. The reduced zeta function Cred( ) can be obtained
by substituting ¢ — 1 in ¢, ,(q,t). We straightforwardly adapt Theorem to a
formula for (red( ) and then use it to determine the order and residue of the pole at

t=1of Cred( ) We first define a reduced counterpart of the numerical data map.

Definition 6.6. The reduced numerical data map Xyeq iS
Xred : Q(X,Y) — Q(t) : Xi > t1,Y; > 0.
The following theorem is a straightforward adaption of Theorem
Theorem 6.7. For all d € Nxo,
gfr;i( ) Z MCI,J Xred(GI,cr (X7 Y))
(I,O‘)Ewd
Proof. Follows from Theorem after substituting ¢ — 1 on both sides of (4.5)).

Next, we will use this formula to deduce the order and residue of the pole at ¢t = 1
of (red( t). Recall that D =d+d' = (d;rl) is the Z-rank of fs 4.

Theorem 6.8. The reduced zeta function Cred( ) has a pole at t =1 of order D with
residue

tim (= 1)PG(0)) = (=1)Pea,
where cq is defined in Deﬁmtzon (64
Proof. Recall from Proposition that Gr, can be seen as the projection of the
subset Ig, 4; .07, € N{y' on the first d+d’ coordinates, or equivalently G ,(X,Y) =
Ip, A, CIJ(X Y,1). Let I'to = {K,|ueUres} be as in Definition Using that
UueU[ i K, = =1Ig, A, Cr, D Theorem results in

(6.2) Gty =" >, MCrs Y xrea(Ku(X,Y,1)).
(I,0)eWy uelr,o

By Theorem [2.19
R ZBEDK—H Z

K (Z) = ’
b [occrr,) (1 —Z%)
where Dz is defined in (2.6) and Z = (X,Y,1). Applying xreq on both sides results

n
o) — — 2o @)
Xred u = s
© [Toecrr(r,) (1 = tvo(®)

where b, («) was defined in Definition It follows that Yreq(Ku(X,Y,1)) has a
pole at t = 1 of order dim K,, and the residue of this pole is

| D

HaeCFE(Ku) bo () .

Recall from Remark @ that the dimension of G, and therefore also of Ig, 4, ,.c;,
and K, is at most D. Thus the summand indexed by u € U, in has a pole at
t =1 of order D if dim X, = D and otherwise the pole has a lower order. Therefore
Cred( t) has a pole at t = 1 of order at most D. To prove that the order is exactly D, it
sufﬁces to show that the sum of the residues of the summands in with maximal
pole order does not vanish. In other words, we need to show that summing over
all u € Uy, with dim K, = D does not cancel out. This is of course trivial, because
. has the same sign for all these u. To find the residue of Cred( ), we may just sum

over all these u, resulting in (—1)P ¢y, where cq was defined in Deﬁnition O

(63) lim ((t . 1)dimKuE(Z)) _ (_1)dimKu

t—1
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6.3. Topological zeta functions. Next, we study the topological zeta function
(;205(5). We write down a formula in Theorem and determine its degree in The-

orem In Theorem [6.11] we link its behaviour at infinity to the behaviour at
t=1of g‘fr;j (t). In Section [6.4| we determine the behaviour of CftQOS(s) at s = 0.

In Section [1.2] we informally introduced the topological zeta function C}fjg(s) as

the rational function in s obtained as the first non-zero coefficient of the p-adic zeta
function ¢, ,(¢,¢~°), expanded in ¢ — 1. More precisely,

Goh(s) = lim(g — 1)K 24, (q.q7°).
s qg—1

For example, for a € Ny and b € N,

(6.4) lim (g — 1)— !

q—1 1—qv b bs—a

The following theorem is an adaption of Theorem (4.24| to a formula for (;201;(3).

Theorem 6.9. For d e N,

Ct;z)(s)z Y MCr, D]

(I,0)eEWy UeUT & max

| D
HaeCFE(KU)(bU(a)S —as(a))

Proof. Recall from Proposition [3.22] that G, can be seen as the projection of the
subset I, 4, ,.c;, S Ny on the first d+d’ coordinates, or equivalently Gr,(X,Y) =
IEU,AI,U,CI,U(XaYa 1). Let I'1» = {K, | uw € Ur,} be as in Definition Using that

UueUL” Ky = Ig, 4, ,.0;, in Theorem results in
(oale:t) = Y, GMCr, > xo(Ku(X,Y,1)).
(I,0)eWy ueUr
By Theorem [2.19
depﬂ XO'(ZB)
[Toccrrx,) (I — Xo(Z9))’
where Z = (X,Y,1). Note that %i_)ni(q— 1)4+4' y,(K,(Z)) vanishes if dim K,, < d+d’,
that is, u € Ur o \Us o,max. The numerator of becomes |DK7J after substituting
q — 1. For each u € Uy 4 max, the denominator of becomes [ [ ccrp(k,) (0o () s —

as(a)) after multiplication with (¢ — 1)~% % and taking the limit ¢ — 1, cf. (6.4)
and Definition [6.2] O

The degree of a rational expression is the degree of the numerator minus the degree
of the denominator. The following confirms [I0, Conj. I] for the considered algebras.

(6.5) Xo(Ku(Z)) =

Theorem 6.10. The topological zeta function C;;Z(s) has degree —D in s:

deg, (G0(5)) = =D,

where D =d+d = (d;rl) is the Z-rank of fa,q.

Proof. All summands in have degree —D in s. For each u € Ujgmax, the
numerator of the summand corresponding to u is MCy, | Dy, |, which is always pos-
itive. Similarly, the highest degree coefficient of the denominator of the summand
corresponding to u is |[,ccrp(k,) bo(a), which is also always positive. Therefore
cancellation of the highest degree terms in is not possible. (|

Next, we study the behaviour of the topological zeta function at infinity.
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Theorem 6.11. The topological zeta function (;205(3) satisfies

lim s~ P¢foP
550 f2,d

where D = d + d = (d;rl) is the Z-rank of f2,4, and cq is defined in Definition .

(371) = Cq,

Proof. Substituting s~! for s in the summand corresponding to u € Uy 5 max in ,
multiplying by s~ and taking the limit s — 0 results in

T | D . | D
im s — = lim
80 HaeCFE(Ku)(bG(a)S —ag(a)) 50 HaeCFE(Ku)(bJ(a) — as(a)s)
B | D
[laccrr(x,) bo(a)
Therefore, using , we find
| D,

lim s~ P¢P(s71) = MCy o = ;

s—0 2,d (I,zge:Wd ueUIZJ:’mX HaeCFE(Ku) bo (a)
which is the definition of ¢4 in (6.1)). O

top

The following corollary shows that the behaviour at infinity of de(s) is closely
related to the behaviour at ¢ = 1 of C{;i (t).

Corollary 6.12. For d € Nxo,

: —D ~top/ —1\ _ 1: — \D sred
lim s™7¢, (™) = lm (1 — )7 G5 (1),

where D =d+d = (d;rl) is the Z-rank of fa,q.
Proof. Combine Theorem [6.11] with Theorem O

Corollary may be compared with [9, Conjecture 6.7], which describes an ana-
logous phenomenon for topological and reduced zeta functions associated with graded
ideal zeta functions of free nilpotent Lie rings of arbitrary rank and nilpotency class.

6.4. Behaviour at zero of the topological zeta function. In Theorem |6.13| we
show that the topological zeta function C;;S(s) has a simple pole at s = 0, just as
the p-adic zeta function , ,(0)(s) for all but possibly a finite number of g (see The-
orem . The residue of this pole is determined in Theorem These two
theorems together confirm [10, Conj. IV (Topological form)| for the considered sub-
algebra zeta functions.

Theorem 6.13. The topological zeta function C;;Og(s) has a simple pole at s = 0.

Proof. We start from the formula for szog(s) in Theorem Let (I,0) € Wy and

U € Ur 5 max- The summand Correspondiflg to u in has numerator MC LU’DKTJ
and denominator [ [,ccrp(k,)(bo(@)s — ag(a)). This numerator is a positive rational
number and the denominator is zero at s = 0 if and only if there is a a € CFE(K,,)
such that a,(a) is zero. Recall from Definition that a,(«) is the non-negative
integer such that x,((X,Y,1)*) = (1 — ¢%(@¢bs(®)) Looking at Definition
a, () is zero if and only if the support of « is contained in {d} u{d+d +i | i€ [ry]}.
Thus the summand corresponding to u in has a pole at s = 0 if and only if there
is a completely fundamental element of K, with support contained in {d} u{d+d +i |
i € [r5]}. From the proof of Theorem we know that this cannot happen if w,
is not the trivial Dyck word. From the proof of Theorem [5.11] we know that if w,
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is the trivial Dyck word, then there are K, that have such a completely fundamental
element, and, moreover, no K, can have more than one such completely fundamental
element. Thus the summand corresponding to u in has at most a simple pole at
s = 0, and therefore C;;S(s) has at most a simple pole.
Let
U()’max = {u € U[’U’max | (I, U) € Wd, bq + 25d+d’+1 € Ku}

The summand corresponding to u in has a simple pole at s = 0 if and only if
u € Up,max. By the reasoning earlier in this proof, if u € Uy max then u € Ur s max with
wy =041, Also I = [d—1] and J, = [d' — 1], because otherwise Ur 5 max is empty.
It follows using Lemma that if u € Uy max N Ur,s, then

1= (1 ) () =

The residue of C;;S(s) at s = 0 is therefore
(6.6) ’

: top _ !
lim s (s) = dld! >

UEUO,max

| D

bo(0a + 204+a+1) [ laecre(m,)\ (80426, 4.} (0o (@)

These summands all have the same sign (—1)d+d/_1, therefore there is no cancellation
and C;;S(s) indeed has a simple pole at s = 0. O

Next, we simplify the complicated expression for the residue in .
Theorem 6.14. The residue of the simple pole at s = 0 of the topological zeta function

Gah(s) is

(-)P!

(D—-1)V

where D =d+d = (d;rl) is the Z-rank of fa,q.

Proof. By the proof of Theorem we know that the summands of indexed

by (I,0) € Wy with w, # 014" do not contribute to the residue. Therefore the
residue can be written as

1P, |
lim s¢°P(s) = lim s MCr “ .
s—0 f2,d s—0 (ngd ’U,EU[’meax HaECFE(Ku) (bo‘ (Oé)S - aa’(Oé))

: top —
lli% SCfQ,d (s) =

The proof of Theorem m also showed that the nonzero summands all have MCy , =
d!d'!, which is independent of (I, ), thus

. top o URFE
hH(l) scbvd(s) =d\d 'il_r)n s Z Z

o 0 (I,O')Ewd ueUI,o‘,max HQGCFE(KH) (ba(a)s B aa(a)) .

! /
we=0% 14

| D

Recall that

|DK7’ ! —
¢ = Jim (g — D)™ o (Ku(X, Y, 1)
HaeCFE(Ku)(ba(a)S — aa(a)) g1 oLy tq
and Jyep, , K, = Ig, A, ,.c;, Where the union is disjoint. This allows us to write
the residue as
. to o P X did'
lim s¢;."(s) = d!d'! ll_rfésél_)rq(q— 1) D xnodEng ar 1y (XY, 1) |img—s-
(I,a)er
wU:Odlld/
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a € CFE(E)p) ‘ Xno (X,Y,1)%) an o (@) bn.o (@)
6; with i e [d — 2] (1 — ¢ld=D¢i) i(d — 1) i

O0d—1 + Odgudre1 (1 — qd_ltd_l) d—1 d—1
g + 2044 with k e [d] | (1 — g?R+d=R)pd+2ky op(d + d' — k) d + 2k
0 + 204+ ar+1 (1—19) 0 d

TABLE 6.2. The completely fundamental elements of Fy and the cor-
responding ay o () and by o (a).

Recall from Remark [3.35| that U(I )EW g 100 =04 14 Ig, . A, .Cry, = Eno and this
union is disjoint. Theretore the residue can be written as

lim sG3," () = dtd" lim s Tim (g = 1) X, (B o, (X, Y 1)) e

Now recall the subset Ey of E, ,. from Deﬁnition and consider the triangulation
I'={K,|ueUyo} of Fyo in Proposition Let Uy := {u € Up,. | Ky € Ep} and
U§ :={ue Uno. | Ky & Eo}. Then Ey = Uuer K, and this union is disjoint. Thus
the residue becomes

;Lr%sggfg(s) = d!d’!ii_r}r(l)s%i_)rq(q—l)d”,xn,o‘ Eo(X, Y, 1)+ Y Ku(X, Y, 1) ||imgs
ueU§

The triangulation I' = {K, | u € Uy, } was constructed so that the K, for u €
U§ do not contain dq + 2044+4+1. Therefore by the same reasoning as in the proof
of Theorem the summands xn.0.(Ky(X,Y,1)) do not contribute to the residue.
For every a« € CFE(Ey), let ap,o. (o) and by () be the respectively non-negative
and positive integers such that yno ((X,Y,1)%) = (1 — g™eo(@¢bno.(@))  As Fy is
simplicial (see Remark we may use Theorem to deduce

‘DE0|

|t—>q*5 ; HaeCFE(EO)(bn.o.(a)s B an-o'(a)) .

c}i_,n%(q — 1) o (Bo(X, Y, 1)

Thus the residue becomes

. top _ - |DE0‘
lim s( iy (s) =d\d !llg(l) SHQECFE(EU)(bn'O'(a)S — Gno. (@)

|DE0’

(6.7) = (=P tad" .
bn.o.(0a + 20arar+1) | laccre(Eo) (5,426, 4, ,} On0.()

The completely fundamental elements « of Ey and the corresponding data ay . (a)
and by o () are listed in Table Using this data, the denominator in (6.7)) becomes

dl T id=d|@d-1) | [] 2kd+d -k |,

i€[d—2] ke[d']

which simplifies to 24 (d)!(d')!(d + d’ — 1)!.

Lastly, we determine |Dpg,|. To do this, we need to count the number of elements
x € Ey that can be written as a Q-linear combination of the completely fundamental
elements of Ey with coefficients in [0, 1). Since J; is the only completely fundamental
element of Ey with support containing {i} for i € [d—2], we deduce that the coefficient
of J; needs to be zero for i € [d — 2]. Similarly, d4—1 + dg4+ @41 is the only completely
fundamental element with support containing {d — 1}, thus the coefficient of §;_1 +
Odrar+1 i zero as well. Also, dg + 26;+1 is the only completely fundamental element
with support containing {i + 1} for i € d — 1 + [d'], thus its coefficient lies in {0, 1/2}.
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Since the coefficient of 41 + dg1q/41 IS zero, dg + 2544411 is the only remaining
completely fundamental element with support containing {d + d’ + 1}. Therefore its
coefficient lies in {0, 1/2} as well. Thus we find that

DEO = Fyn 2 ai(éd + 2(51'4_1) a; € {0, 1/2}
ied—14+[d’'+1]
Obviously Zied—1+[d’+1] a;(0g+20;4+1) lies in Ng*d/ﬂ if and only if Zied—1+[d’+1] a; €N,
in other words when an even number of a; are non-zero. Moreover, in that case, it
also lies in Ep, thus we find that |Dp,| = 27
We conclude by inputting this data in (6.7)):
2d/ B (_1)D
2 () (d)(d +d —1)! (D —1)

lim s¢;°P(s) = (—1)"d!d"!

7. EXPLICIT COMPUTATIONS

We record (aspects of ) explicit computations of the p-adic, reduced, and topological
zeta functions. The full results are available at 10.5281/zenodo.7966735. We start by
collecting the well-known formulas for d = 2, 3.

Proposition 7.1 (d = 2).

B 1—¢3t3
N (e (eI ()
to o 3
Gaa(8) = 225 —3)(s — 1)s’
Crf;i(t)z 2 +t+1

(1—=)2(1—1)

Proof. The p-adic formula was given in [8, Prop. 8.1], the others follow immediately.
O

Proposition 7.2 (d = 3).
(1 — ¢t ) Was(q, 1)
G0 = TN (1 - #0 - B0 - P~ PBY1 — PP (1 — ¢B)
where Wy 3(X,Y) is
1+ X372+ X4Y?2 + X°v? — X4y3 — X%y3 — xO0y3 — X7y4 — xv*?
_xl0y5 _ ylly5s  xl2y5s | xlly6 ) x12y6  x13y6 | y16y8

Furthermore
ctop(s) = 2552 — 945 + 84
2,3 3(3s —7)(3s — 8)(2s = 5)(s — 1)(s — 2)%(s — 3)s’
B +2T+ 70+ 95 + 1261 + 93 + T2+ 2t + 1
- (1= B3 —2)2(1—1) '
Proof. The p-adic formula was given in [I5, Thm 24], the others follow immediately.
O

Gea(t)

In [2], an algorithm is presented to write the generating function enumerating
integral points of a convex pointed polyhedral cone in a closed form. This algorithm is
implemented in the software package LattE [I], which can be accessed in SageMath [12]
through the package Zeta [I1]. By this route, we were able to implement Theoremm
and recover the explicit expressions for (j, , (g, t) for n = 2,3 in Propositions and


https://doi.org/10.5281/zenodo.7966735
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Moreover, we were also able to obtain an explicit expression for ¢, ,(q,t), which
was not known before.

Theorem 7.3 (d = 4, p-adic). There is an explicitly determined polynomial Wy 4(X,
Y) e Z|X,Y] of degrees 335 in X and 88 in'Y such that

(1)274((]7 t)
l1’274(q7 t)7

(7'1> Cf2,4(0)(Q7t) =
where Wy 4(q,t) is
(1 _ q27t7)(1 _ q25t7)(1 _ q25t6)(1 _ q28t7)(1 _ q22t5)2( 21t5)(1 17t4)
(1 _ q15t4)(1 _ q13t4)(1 _ q26t6)(1 _ q13t3)(1 _ q11t3)( 18t4)(1 9t2)
(1—¢")(1 = ¢*t*)(1 = ¢t (1 — ¢t (1 = ¢°°)(1 — ¢*t") (1 — gt)(1 —1).
Corollary 7.4 (d = 4, reduced).
20
(1—=t)>(1 =)L —tH)H

Gea(t) =
where @5‘?2(15) is
120 4 2419 1 15418 4 30417 4 87416 + 156415 + 284+ + 414413 + 562¢12 + 658t
+ 703t10 + 6587 + 56218 + 414¢7 + 28415 + 156¢° + 87t* + 303 + 15¢% + 2t + 1.
Proof. Substitute ¢ = 1 in ([7.1). Alternatively, explicate [7, Prop. 4.1]. O
Theorem 7.5 (d = 4, topological).
(D575 (5)/(168 " (s))) =(Ts — 25)(Ts — 27)(6s — 25)(5s — 21)(5s — 22)°
(4s — 13)(4s — 15)(4s — 17)(3s — 11)(3s — 13)?
(25 = 7)(25 — 9)%(s — 1)(s — 3)%(s — 4)%s,
where @g?f(s) is
2107803600052 — 1040066363064s'2 + 23656166485364s'!
— 328379597912246s'0 + 3103756047141233s” — 21092307321737791s%
+ 106022910302150804s7 — 399106101276334990s° + 11250383250141244895°

— 2345400850582061927s% + 351461291528129471453
— 35847268159974178865° + 2230351512292203300s — 639268261271640000.

The computation of the p-adic zeta function for d = 5 is currently out of our reach.
We are, however, able to compute the reduced zeta function Cred( ) (using Evseev’s

method, [7, Prop. 4.1]) and the topological zeta function €f2 P(s) (using our method).
Theorem 7.6 (d = 5, reduced; [7]).

P4 (t)
(=5 =31 —tH)*(1 = 1))’

Ged(t) =
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where @5‘?5‘3 (t) is

42 a4 30640 4 115630 4 431438 + 1330637 + 370936 + 9185¢3° 4 208763

+ 43410633 + 8373732 + 15012731 4 252056¢30 + 397040t%° + 589457t

+ 8260577 + 1095916t%° + 1377780t%° + 1644507t** + 1864452t%3 + 2010117t
+ 2060784121 + 2010117t%° + 1864452t + 1644507¢'8 + 1377780¢17 + 109591616
+ 826057t 4 58945714 + 397040t + 252056t1% 4 150127t + 83737110

+ 43410t° 4 208765 + 9185t" + 37095 + 1330t° + 431t* + 115> + 30t + 4t + 1.

Theorem 7.7 (d = 5, topological).

where CI)mp(s) € Z[s] is an explicitly determined irreducible polynomial of degree 71
and \I/gog( ) is

(385 — 225)(37s — 223)(35s — 216)(31s — 199)(31s — 200)(29s — 189)(29s — 190)
(265 — 165)(25s — 153)(255 — 161)(25s — 166)(23s — 151)(23s — 153)(22s — 141)
(225 — 145)(21s — 130)(20s — 131)(19s — 112)(19s — 122)(17s — 93)(17s — 108)
(175 — 112)(17s — 113)(155 — 89)(14s — 85)(13s — 70)(13s — 81)(13s — 82)

(135 — 88)(12s — 77)(11s — 71)(11s — 72)(10s — 63)*(9s — 44)(9s — 46)(9s — 47)
(95 — 55)(9s — 58)2(9s — 59)(8s — 45)(8s — 51)(8s — 53)%(7s — 41)(7s — 43)?
(75 — 46)*(6s — 37)(5s — 21)(5s — 22)(5s — 23)(5s — 24)(55 — 31)(5s — 32)

(55 — 33)%(4s — 21)(4s — 23)(4s — 25)(3s — 14)(3s — 16)(3s — 17)(3s — 19)?

(35 — 20)%(25 — 11)%(2s — 13)3(5 — 1)(s — 2)(s — 3)(s — 4)*(s — 6)*s.

For d = 6, the computation of both the p-adic and the topological zeta function
is currently out of our reach. We record the explicit formula for the reduced zeta
function, computed using Evseev’s method.

Theorem 7.8 (d = 6, reduced; [7]).

re D5 (1)
Grelt) = )00 = B8 — AP B
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where @5‘?&1(75) s
72 + 3t™ 4 3670 + 145¢52 + 669t%° + 256257 + 8649t + 27045t%° + 77670¢54
+ 206735t% + 515748t%2 + 1211748t + 2692110t + 5682609t
+ 11436687t58 + 2200744257 + 405982380 + 71961840t%° + 122797673t
+ 202076190%3 + 321171642t%% + 49366286717 + 734688480t%° + 105975843611
+ 1482992565t + 201488566517 + 2659813131¢%6 + 34136042485 + 426161345144
+ 5177738109t% + 6124749888t1% + 7056165426t + 791964337810 4 866161863413
+ 9232638888138 + 9592688376137 + 971571835230 + 9592688376t + 9232638888134
+ 8661618634t33 + 7919643378132 + 7056165426t3! + 61247498883 + 5177738109t
+ 4261613451428 + 3413604248t%” + 2659813131¢2¢ + 2014885665t%° + 1482992565t
+ 1059758436t%% + 734688480t*2 + 493662867t + 321171642t%° + 202076190t
+122797673t'8 + 71961840t + 4059823816 + 22007442¢1° + 11436687¢14
+ 5682609¢'3 + 2692110¢12 + 1211748t + 515748t'° + 206735¢°
+ T7670t5 + 270457 + 86495 + 2562¢° + 669t* + 145¢3 + 36t2 + 3t + 1.

Our computations of p-adic zeta functions allow us to confirm the second part of
[10, Conjecture IV (B-adic form)] for small values of d.

Corollary 7.9. For all d € {2,3,4}, the following holds:

CfQ,d(o) (S) — 1,

COD (8) 5=0
where D =d+d = (dgl) is the Z-rank of f2 4.

The conjecture’s first part holds for all d and all but a finite number of ¢,, see The-
orem [o. 19
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