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Abstract. We describe an effective procedure to compute the local subgroup zeta
functions of the free class-2-nilpotent groups on d generators, for all d. For d “ 4,
this yields a new, explicit formula. For d P t4, 5u, we compute the topological
subgroup zeta functions. We also obtain general results about the reduced and
topological subalgebra zeta functions. For the former, we determine the behaviour
at one; for the latter, the degree and behaviours at zero and infinity. Some of these
results confirm, in the relevant special cases, general conjectures by Rossmann.
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1. Introduction

1.1. Setup. We study the subgroup growth of finitely generated free nilpotent groups
of nilpotency class two. For d P Ně2, the free nilpotent group F2,d of nilpotency class
two on d generators has presentation

F2,d “ xg1, . . . , gd | @1 ď i, j, k ď d : rrgi, gjs, gks “ 1y.

The subgroup zeta function of F2,d is the Dirichlet generating series

ζF2,d
psq “

ÿ

HďF2,d

|F2,d : H|´s,

where s is a complex variable (and 8´s “ 0, so the sum extends in effect only over
the subgroups of finite index). It is well-known that ζF2,d

psq has an Euler product

(1.1) ζF2,d
psq “

ź

p prime

ζF2,d,ppsq,

where, for each prime p, the Euler factor ζF2,d,ppsq enumerates the subgroups of F2,d of
p-power index; cf. [8, Prop. 4]. By a deep result of Grunewald, Segal, and Smith ([8,
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Thm. 1]) these local zeta functions are all rational in the parameter t “ p´s. Com-
puting these—and other groups’—local zeta functions explicitly, however, is difficult.
Previously, explicit formulas were only known for d P t2, 3u; see Section 7.

The free step-2-nilpotent Lie ring f2,d on d generators has presentation

f2,d “ xx1, . . . , xd | @1 ď i, j, k ď d : rrxi, xjs, xks “ 0y.

The subalgebra zeta function of f2,d is

ζf2,dpsq “
ÿ

Hďf2,d

|f2,d : H|´s.

It is well known that the problem of counting subgroups of the group F2,d is the same
as the problem of counting subalgebras of f2,d. Indeed, the fact that

ζF2,d
psq “ ζf2,dpsq

is not hard to verify; see [8, Chap. 4]. It justifies that we concentrate on subalgebra
zeta functions in the following.

For any (commutative) ring R, we set f2,dpRq “ f2,d bZ R and consider the subal-
gebra zeta function

(1.2) ζf2,dpRqpsq “
ÿ

Hďf2,dpRq

|f2,dpRq : H|´s,

enumerating R-subalgebras of f2,dpRq of finite index. In practice, we will focus on
rings R which are compact discrete valuation rings (cDVRs), viz. finite extensions of
the p-adic integers Zp (in characteristic zero) or rings FqJT K of formal power series
over finite fields (in positive characteristic). We write p for the unique maximal ideal
of o, with residue field cardinality |o{p| “: qo, a prime power. By (1.1), the Euler
product decomposition (1.1) is mirrored by the factorization

(1.3) ζf2,dpsq “
ź

p prime

ζf2,dpZpqpsq.

1.2. Main results. In the present paper, we present an effective procedure to com-
pute the local subalgebra zeta functions ζf2,dpoqpsq for all d P Ně2 and cDVR’s o.

Theorem 4.24 establishes an explicit formula for ζf2,dpoqpsq, by defining a bivariate ra-

tional function ζf2,dpq, tq such that ζf2,dpoqpsq “ ζf2,dpqo, q
´s
o q. This rational expression

ζf2,dpq, tq is given in terms of Gaussian q-multinomials and finitely many generating
functions enumerating the elements of a subset of Nm

0 .
We apply this formula in different ways, both theoretically and practically. First, it

inspires a notion of no-overlap subalgebra zeta function of f2,dpoq enumerating, loosely
speaking, “most of” the finite-index subalgebras of f2,dpoq, see Section 5.1. We prove
that this summand satisfies the same local functional equation as ζf2,dpoqpsq; see The-
orem 5.9. Second, we derive from the formula that, for all d and almost all cDVRs
o, the p-adic subalgebra zeta function ζf2,dpoqpsq has a simple pole at s “ 0, estab-
lishing a conjecture of Rossmann for the relevant algebras, see Theorem 5.13. Third,
we compute the subalgebra zeta functions ζf2,4poqpsq fully explicitly by implementing

the formula in SageMath [12] using LattE [1] and Zeta [11], see Theorem 7.3 for a
paraphrase and 10.5281/zenodo.7966735 for full details.

To consider Euler products such as (1.3) is just one way to capture information
about “many” p-adic zeta functions uniformly. Others include the reduced zeta func-
tions pioneered by Evseev ([7]) and the topological zeta functions developed by Ross-
mann ([10]). Both may be paraphrased as results of “setting qo “ 1”, in subtly
different ways. Crudely speaking, the reduced zeta function ζredf2,d

ptq is the univariate

rational expression in t defined as ζf2,dp1, tq. Equally informally, the topological zeta

https://doi.org/10.5281/zenodo.7966735
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function ζtopf2,d
psq is the univariate rational expression in s obtained as the first non-zero

coefficient of ζf2,dpq, q´sq, expanded in q ´ 1.

In Theorem 6.8 we show that the reduced subalgebra zeta function ζredf2,d
ptq has a

pole at t “ 1 of order D :“ d `
`

d
2

˘

, which is the Z-rank of f2,d. In Theorem 6.10
we establish that D is also the degree of the topological subalgebra zeta function
ζtopf2,d

psq. In Theorem 6.13 and Theorem 6.14 we show that the topological zeta function

has a simple pole at s “ 0 and compute its residue there. This confirms, in the
relevant special cases, general conjectures by Rossmann. The topological and reduced
subalgebra zeta functions feature together in Theorem 6.11; it links the topological
zeta function’s behaviour at infinity and the reduced zeta function’s residue at t “ 1.
We also compute the topological subalgebra zeta functions ζtopf2,4

psq and ζtopf2,5
psq fully

explicitly using our implementation of Theorem 4.24, see Theorems 7.5 and 7.7.

1.3. Related work. For d ď 3, the p-adic subalgebra zeta functions ζf2,dpoqpsq—and,
as corollaries, their topological and reduced analogues—have been known for some
time; see Section 7 for explicit formulas and references. For c ą 2, the subalgebra
zeta functions of the free step-c-nilpotent Lie rings on d generators fc,d are largely
unknown. To our knowledge, explicit formulas are only known for pc, dq “ p3, 2q, by
work of Woodward; cf. [6, Thm. 2.35].

The ideal zeta functions ζŸ
f2,dpoq

psq, enumerating ideals of finite index, have been

computed, for all d, in [16]. This yields, in particular, the (global) ideal zeta function
ζŸ
f2,d

psq “
ś

p ζ
Ÿ
f2,dpZpq

psq. In analogy with (1.1) we have ζŸ
f2,d

psq “ ζŸ
F2,d

psq, the normal

zeta function of the free class-2-nilpotent group F2,d, enumerating normal subgroups
of finite index.

1.4. Organization and notation. In Section 2, we recall some well-known nomen-
clature and results. We consider Gaussian binomial and multinomial coefficients
in Section 2.1; the enumeration of submodules of o-modules of finite rank in Sec-
tion 2.2, convex polyhedral cones in Qm in Section 2.3; monoids in Nm

0 , in particular,
solution sets of systems of linear homogeneous Diophantine equations, in Section 2.4;
and generating functions of subsets of Nm

0 , in particular monoids, in Section 2.5.
In Sections 2.6 and 2.7, we define some notation and prove some preliminary results
for certain subsets of a monoid in Nm

0 . In Section 3, we define the specific monoids
and subsets in Nm

0 that are used in the later sections to write down formulas for the
considered subalgebra zeta functions.

Section 4 culminates in Theorem 4.24, an explicit formula for ζf2,dpoqpsq as a fi-
nite sum, whose summands are products of Gaussian q-multinomials and generating
functions of subsets of Nm

0 as discussed in Section 2.5. In Section 5, we use this expli-
cit formula to obtain several general results on the p-adic subalgebra zeta functions
ζf2,dpoqpsq. Notably, we introduce the no-overlap subalgebra zeta function of f2,dpoq

in Section 5.1 and show that for all d and almost all cDVRs o, the p-adic subalgebra
zeta function ζf2,dpoqpsq has a simple pole at s “ 0 in Section 5.4.

In Section 6, we obtain results on the reduced and topological zeta functions men-
tioned in Section 1.2. For the former, we determine the behaviour at t “ 1 and for
the latter, the degree and behaviours at zero and infinity. In Section 7, we record
fully explicit formulas for p-adic, reduced and topological subalgebra zeta functions
associated with f2,d for small values of d, both known and new.

Table 1.1 gives a partial list of the notation used.

Acknowledgements. This work forms part of the second author’s doctoral dissertation,
supervised by the third author. We would like to thank Tobias Rossmann for pointing
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Notation Meaning Location
o compact discrete valuation ring Section 1.1
qo cardinality of the residue field o{p, a prime power Section 1.1
f2,dpoq tensor product f2,d bZ o Section 1.1
ζf2,dpoqpsq subalgebra zeta function of f2,dpoq (1.2)

ζf2,dpq, tq rational function with ζf2,dpqo, q
´s
o q “ ζf2,dpoqpsq for all o Section 1.2

D d `
`

d
2

˘

“
`

d`1
2

˘

, the Z-rank of f2,d Section 1.2

d1
`

d
2

˘

Section 2.1
`

n
J

˘

q
Gaussian multinomial coefficient Definition 2.2

Pn set of integer partitions of at most n parts Section 2.2.1
ν ď µ νi ď µi for i P rns for partitions µ, ν P Pn Section 2.2.1

λ
pnq

1 pλ1qjPrns P Pn Section 2.2.1
αpλ, µ; oq number of subgroups of isomorphism type µ of a finite

abelian p-group of isomorphism type λ
Section 2.2.1

|λ|
řn

i“1 λi Section 2.2.2
F interior of a monoid F in Nm

0 Section 2.4
XpZq generating function of X Ď Nm

0 Section 2.5
DF specific finite subset of a monoid F in Nm

0 (2.6)
Wd set of relevant pairs pI, σq with I Ď rd´1s and σ P S2d1 Definition 3.11

GI,σ specific subset of Nd`d1

0 for each pI, σq P Wd Definition 3.13
X tuple of indeterminates pXiqiPrds Section 3.2
Y tuple of indeterminates pYjqjPrd1s Section 3.2

HI,J specific subset of Nd`d1

0 for each I Ď rd ´ 1s and J Ď

rd1 ´ 1s

Definition 3.30

wσ Dyck word associated with σ P S2d1 Definition 3.37
µλ integer partition pµjqjPrd1s P Pd1 such that the multisets

tµj | j P rd1su and tλi ` λi1 | i ă i1 P rdsu coincide

Definition 4.1

GMCI,σ product of Gaussian multinomial coefficients associ-
ated with pI, σq P Wd

Definition 4.19

χσ numerical data map Definition 4.21
ζwf2,dpq, tq bivariate rational expression such that the evaluation

ζwf2,dpqo, q
´s
o q equals ζwf2,dpoq

psq for all o
Section 5.1

ζn.o.f2,d
pq, tq bivariate rational expression such that the evaluation

ζn.o.f2,d
pqo, q

´s
o q equals ζn.o.f2,dpoq

psq for all o
Section 5.1

χn.o. no-overlap numerical data map Section 5.2
MCI,σ product of multinomial coefficients associated with

pI, σq

Definition 6.1

aσpαq

bσpαq

non-negative integers for each σ P S2d1 and α P Nmσ
0

that are closely related to the numerical data map χσ

Definition 6.2

UI,σ,max set of u P UI,σ such that dimKu “ D Definition 6.4
cd specific positive rational number depending only on d Definition 6.4
ζredf2,d

ptq reduced subalgebra zeta function of f2,d Section 6.2

χred reduced numerical data map Definition 6.6

ζtopf2,d
psq topological subalgebra zeta function of f2,d Section 6.3

Table 1.1. Notation.
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out to us how to use Zeta [11] to efficiently write large sums of rational functions of a
specific form on a common denominator. This work was partly funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) — SFB-TRR 358/1
2023 — 491392403.

2. Preliminaries

2.1. Gaussian binomial and multinomial coefficients. We start by recalling
Gaussian binomial and multinomial coefficients.

Definition 2.1. Let k, n P N0 with k ď n. The Gaussian binomial coefficient or
q-binomial coefficient

`

n
k

˘

q
is the following polynomial in q:

ˆ

n

k

˙

q

:“
p1 ´ qnqp1 ´ qn´1q ¨ ¨ ¨ p1 ´ qn´k`1q

p1 ´ qkqp1 ´ qk´1q ¨ ¨ ¨ p1 ´ q1q
.

Definition 2.2. Let n P N0 and J “ tji | i P rrsu Ď rn ´ 1s with j1 ď ¨ ¨ ¨ ď jr. The
Gaussian multinomial coefficient

`

n
J

˘

q
is the polynomial in q defined as

ˆ

n

J

˙

q

:“

ˆ

n

j1

˙

q

ˆ

n ´ j1
j2 ´ j1

˙

q

. . .

ˆ

n ´ jr´1

jr ´ jr´1

˙

q

.

We write Sn for the symmetric group of degree n, a Coxeter group with Coxeter
generators s1, . . . , sn´1. For σ P Sn, we write ℓpσq for the Coxeter length of σ and
Despσq “ ti P rn´ 1s | ℓpσsiq ă ℓpσqu for its (right) descent set. The unique ℓ-longest
element in Sn is denoted σ0, with ℓpσ0q “

`

n
2

˘

. The identities

ℓpσσ0q “ ℓpσ0q ´ ℓpσq, Despσσ0q “ rn ´ 1szDespσq,

and

(2.1)

ˆ

n

J

˙

q

“
ÿ

σPSn,DespσqĎJ

qℓpσq

for J Ď rn ´ 1s are well-known. We represent permutations σ P Sn by their one-line
notation, i.e. the word σp1qσp2q . . . σpnq in the letters rns.

2.2. Counting submodules of o-modules. We recall some well-known facts about
the enumeration of submodules of finitely generated o-modules, where o is a cDVR.
We consider torsion modules in Section 2.2.1 and torsion-free modules in Section 2.2.2.

2.2.1. Finite o-modules. Let Pn Ă Nn
0 be the set of integer partitions of at most

n (non-zero) parts, i.e. the set of tuples λ “ pλjqjPrns with λi P N0 for i P rns and
λi ě λi`1 for i P rn´1s. By convention, λn`1 “ 0 for λ P Pn. We call a finite o-module
of isomorphism type λ if it is isomorphic to the product Co,λ :“ o{pλ1 ˆ ¨ ¨ ¨ ˆ o{pλn

of finite cyclic o-modules.
Let λ, µ P Pn. We write µ ď λ if µi ď λi for every i P rns. Let αpλ, µ; oq be

the number of submodules of Co,λ of isomorphism type µ. The following formula for
αpλ, µ; oq was recorded (at least in the case o “ Zp, i.e. for finite abelian p-groups)
in [4]. We denote by λ1 and µ1 the conjugate partitions of λ and µ, respectively.

Proposition 2.3 ([4]). Let µ ď λ be partitions, with conjugate partitions µ1 ď λ1.
Then

(2.2) αpλ, µ; oq “
ź

kě1

q
µ1
kpλ1

k´µ1
kq

o

ˆ

λ1
k ´ µ1

k`1

µ1
k ´ µ1

k`1

˙

q´1
o

.

For later use, we obtain a slightly different expression for αpλ, µ; oq.
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λ1 λ2 λ3 µ1 µ2 µ3

m1 m3 m5m2 m4 m6

Figure 2.1. Illustration of Example 2.5.

Definition 2.4. Let µ ď λ P Pn. Let mj P N0 for j P r2ns be such that multisets λYµ
and tmjujPr2ns are equal and m1 ě m2 ě ¨ ¨ ¨ ě m2n. Let L0 “ M0 “ 0 and

Lj “ #ti P rns | λi ě mju,

Mj “ #ti P rns | µi ě mju,

for j P r2ns.

We note that similar but different integers Lj and Mj are defined in [13, (2.13)].

Example 2.5. For λ “ p4, 2, 1q and µ “ p3, 2, 0q in P3, we find that pmjqjPr6s “

p4, 3, 2, 2, 1, 0q, pLjqjPt0,...,6u “ p0, 1, 1, 2, 2, 3, 3q, and pMjqjPt0,...,6u “ p0, 0, 1, 2, 2, 2, 3q.
See Figure 2.1 for an illustration of this example.

The following lemma resembles [13, Lemmas 2.16 and 2.17].

Lemma 2.6. Let λ, µ P Pn with µ ď λ. Then

(2.3) αpλ, µ; oq “

2n
ź

j“1

ˆ

Lj ´ Mj´1

Mj ´ Mj´1

˙

q´1
o

q
MjpLj´Mjqpmj´mj`1q
o .

Proof. The product in (2.2) is indexed by integers k. Suppose that j P r2ns and
k P rλ1s are such that mj ě k ą mj`1. Then λ1

k “ Lj and µ1
k “ Mj . Hence (2.2)

reads

αpλ, µ; oq “

2n
ź

j“1

mj
ź

k“mj`1`1

q
MjpLj´Mjq
o

ˆ

Lj ´ µ1
k`1

Mj ´ µ1
k`1

˙

q´1
o

.

Now µ1
k`1 is equal to Mj if mj ą k ą mj`1 and equal to Mi if k “ mj and i “

maxpti P r2ns | Mi ă Mjuq. If µ1
k`1 “ Mj , then

`Lj´µ1
k`1

Mj´µ1
k`1

˘

q´1
o

“ 1. Removing these

factors from the product we obtain

αpλ, µ; oq “

2n
ź

j“1

ˆ

Lj ´ Mj´1

Mj ´ Mj´1

˙

q´1
o

mj
ź

k“mj`1`1

q
MjpLj´Mjq
o

“

2n
ź

j“1

ˆ

Lj ´ Mj´1

Mj ´ Mj´1

˙

q´1
o

q
MjpLj´Mjqpmj´mj`1q
o . □

Given λ1 P N0, we write λ
pnq

1 for pλ1qjPrns P Pn. The following is obvious.
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Corollary 2.7. Let λ P Pn and set I :“ ti P rn ´ 1s | λi ą λi`1u. Then

α
´

λ
pnq

1 , λ; o
¯

“

ˆ

n

I

˙

q´1
o

n
ź

j“1

q
jpn´jqpλj´λj`1q
o .

2.2.2. Free o-modules. Let π be a uniformiser of o, i.e. a generator of p.

Definition 2.8. Let Λ be a submodule of on of finite index. Let tπλjujPrns with λ1 ě

¨ ¨ ¨ ě λn be the multiset of elementary divisors of on{Λ. The partition λ “ pλjqjPrns P

Pn is the elementary divisor type of Λ, written εpΛq “ λ.

We note that Corollary 2.7 yields the number of submodules of on of elementary
divisor type λ. This proves the following proposition, which counts submodules of
fixed elementary divisor type. Given λ “ pλjqjPrns P Pn, we set |λ| “

řn
i“1 λi.

Proposition 2.9 ([5, Section 4.2]). Given a partition λ “ pλjqjPrns P Pn,
ÿ

Λďon

εpΛq“λ

|on : Λ|´s “ αpλ
pnq

1 , λ; oqq
´s|λ|
o .

The following proposition counts submodules containing a given submodule.

Proposition 2.10 ([5, Section 4.3]). Let M ď on be a submodule with elementary
divisor type εpMq “ µ. Then

ÿ

Λďon

ΛěM

|on : Λ|´s “
ÿ

νPPn
νďµ

αpµ, ν; oq q
´s|ν|
o .

Proof. Observe that on{M – Co,µ and |on : Λ| “ q
|ν|
o if εpΛq “ ν. □

2.3. Convex polyhedral cones in Qm. We recall some general nomenclature and
results for convex polyhedral cones. We largely follow [14, p. 477].

The dimension dimA of a subset A Ď Qm is the dimension of the subspace of Qm

generated by A. A cone in Qm is a subset C Ď Qm that is closed under addition and
scaling by non-negative rational numbers. The convex cone generated by A Ď Qm is

CA :“ ta1x1 ` ¨ ¨ ¨ ` atxt | x1, . . . , xt P A, a1, . . . , at P Qě0u.

A linear half-space of Qm is a subset of Qm of the form H “ tv P Qm | w ¨ v ě 0u for
a vector w P Qmzt0u. A convex polyhedral cone C is the intersection of finitely many
half-spaces. It is pointed if it does not contain a line.

Let C be a convex polyhedral cone in Qm. A supporting hyperplane for C is a
hyperplane H that divides Qm into two linear half-spaces H` and H´ such that C

Ď H` or C Ď H´. A face F of C is either an intersection CXH of C with a supporting
hyperplane H or equal to C. Faces of dimension one are called extreme rays and faces
of dimension m ´ 1 are called facets. The convex polyhedral cone C is simplicial if it
has exactly dimC extreme rays.

For x P Qm and ε ą 0, let Nεpxq be the closed ball or radius ε around x. Let A be
any subset of Qm and affpAq the affine hull of A. The relative interior relintpAq of A
is the set of points a P A such that there is an ε ą 0 with Nεpxq X affpAq contained
in A. If A is a convex polyhedral cone, then the relative interior of A is the set of
points in A that are not contained in any face of A of lower dimension than A.

Definition 2.11 ([14, p. 477]). Let C be a convex polyhedral cone in Qm. A triangu-
lation of C is a finite family Γ “ tKuuuPU of simplicial polyhedral cones Ku such that
the following hold:

‚ C “
Ť

uPU Ku,
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‚ for each Ku P Γ, every face of Ku is an element of Γ, and
‚ for every Ku,Kv P Γ, the intersection KuXKv is a common face of Ku and Kv.

An element of Γ is called a face of Γ.

Remark 2.12. If Γ “ tKuuuPU is a triangulation of C, then C “
Ť

uPU relintpKuq and
this union is disjoint.

Proposition 2.13 ([14, Lem. 4.5.1]). Every pointed polyhedral cone C has a triangu-
lation whose one-dimensional faces are the extreme rays of C.

Let P be a poset with partial order relation ďP . An interval in P is a subset of P
of the form rx, ys “ tz P P | x ďP z ďP yu for some x ďP y P P . An interval is
non-trivial if x ăP y. The element x covers y in P if ry, xs “ tx, yu. The poset P
is graded if it is endowed with a rank function rk : P Ñ N0, i.e. a function satisfying
rkpxq ą rkpyq if x ąP y in P and rkpxq “ rkpyq ` 1 if x covers y. A graded poset P is
Eulerian if, in any non-trivial interval, the number of elements of even rank and the
number of elements odd rank coincide.

Let C be a convex polyhedral cone in Qm. The lattice of faces LpCq is the poset
consisting of the faces of C ordered by inclusion. The following is well known and is
a consequence of [3, Cor. 3.5.4] and [3, Cor. 3.3.3].

Proposition 2.14. The lattice of faces LpCq of C is Eulerian. If C is pointed, then
the rank of a face F is dimpFq.

2.4. Monoids in Nm
0 . We discuss monoids in Nm

0 , in particular those that are as-
sociated with systems of homogeneous linear equations with integer coefficients. We
largely follow [14, Sec. 4.5].

Amonoid F in Nm
0 is a subset of Nm

0 that contains zero and is closed under addition.
The interior of F , denoted by F , is the set of points in F that lie in the relative interior
of CF . The completely fundamental elements CFpF q of F are the elements β P F such
that if n P N and α, α1 P F are such that nβ “ α ` α1, then α “ iβ and α1 “ pn ´ iqβ
for some i P N0 with i ď n. A system of r homogeneous linear equations with integer
coefficients in m variables α1, . . . , αm can always be written as Φpα1, . . . , αmq “ 0
for an r ˆ m matrix Φ over Z. The set of solutions in Nm

0 of this system,

(2.4) E “ EΦ :“ tα P Nm
0 | Φα “ 0u,

is a monoid in Nm.

Remark 2.15. The convex cone CE generated by E is a pointed convex polyhedral
cone. The completely fundamental elements of E each generate an extreme ray of CE

and vice versa.

Remark 2.16. We may assume that the rank of Φ is r by deleting dependent rows
of Φ. If E X Nm “ H, then there must be an i P rms such that the i-th entry of α
is 0 for every α P C. In this case, we can just ignore the i-th coordinate. In general,
we assume that no coordinates are redundant and that E X Nm ‰ H. It then follows
that the interior E is the set E X Nm of positive points in E.

Remark 2.17. Through slack variables, (2.4) can be used to study monoids defined by
linear inequalities as well. Concretely, let Φ P MatkˆmpZq and consider the monoid
S “ tv P Nm

0 | Φv ě 0u. The points in S are in bijection with the points in
!

v P Nm
0 , γ P Nk

0 | Φv ´ γ “ 0
)

,

where γ is a tuple of k (slack) variables.
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A monoid F in Nm
0 is simplicial if there exist Q-linearly independent tuples α1,

. . . , αt P F called quasigenerators of F such that

F “ tγ P Nm | Dn P N, Da1, . . . , at P N0 : nγ “ a1α1 ` ¨ ¨ ¨ ` atαtu.

A monoid F is simplicial if and only if CF is a simplicial polyhedral cone. In that case,
the completely fundamental elements CFpF q are quasigenerators of F . The interior F
of a simplicial monoid F can be characterised by

F “ tγ P Nm | Dn P N, Da1, . . . , at P N : nγ “ a1α1 ` ¨ ¨ ¨ ` atαtu.

The support of a tuple x “ px1, . . . , xmq P Qm
0 is the set supppxq :“ ti P rms |

xi ‰ 0u. The support of a set V Ď Qm is supppV q :“
Ť

vPV supppvq. Suppose that
E “ EΦ for some Φ P MatrˆmpZq. The lattice of supports LpEq of E is the set
tsupppαq | α P Eu of supports of tuples in E, ordered by inclusion. The next result
identifies the posets LpCEq and LpEq.

Theorem 2.18 ([14, p. 479]). The map

LpCEq Ñ LpEq : F ÞÑ supppFq

is a poset isomorphism.

Because of Remark 2.16, we may assume that LpEq has rms as greatest element.

2.5. Generating functions of subsets of Nm
0 . We discuss a generating function

associated with subsets of Nm
0 , in particular monoids and their interiors. We largely

follow [14, Sec. 4.5].
For a subset X Ď Nm

0 , define the generating function

(2.5) XpZq :“
ÿ

αPX

Zα P QJZK,

in the indeterminates Z “ pZjqjPrms, where Z
α “

ś

jPrms Z
αj

j for α “ pαjqjPrms P Nm
0 .

The sets X whose generating functions we consider are often monoids F or E “ EΦ,
or the interior F or E of such monoids.

Consider a monoid F in Nm
0 that is simplicial with quasigenerators α1, . . . , αt.

Define the following finite subsets of F which depend on the choice of quasigenerators:

DF :“ tx P F | x “ a1α1 ` . . . ` atαt, 0 ď ai ă 1u,

DF :“ tx P F | x “ a1α1 ` . . . ` atαt, 0 ă ai ď 1u.

Theorem 2.19 ([14, Cor. 4.5.8]). Let F Ď Nm
0 be a simplicial monoid with quasigen-

erators α1, . . . , αt. The generating functions F pZq and F pZq are rational and given
by:

F pZq “

ř

βPDF
Zβ

śt
i“1 p1 ´ Zαiq

,

F pZq “

ř

βPDF
Zβ

śt
i“1p1 ´ Zαiq

.(2.6)

For monoids E of the form (2.4), we have the following result.

Theorem 2.20 ([14, Theorem 4.5.11]). Let E “ EΦ for some Φ P MatrˆmpZq. The
generating functions EpZq and EpZq are rational and when written in lowest terms,
they both have denominator

ź

βPCFpEq

´

1 ´ Zβ
¯

.
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The following two theorems are reciprocity results for XpZq, for simplicial monoids
and monoids of the form (2.4) respectively. Let Z´1 “ pZ´1

j qjPrms.

Theorem 2.21 ([14, Lemma 4.5.13]). Let F Ď Nm be a simplicial monoid of dimen-
sion n. Then

F pZ´1q “ p´1qnF pZq.

Theorem 2.22 ([14, Theorem 4.5.14]). Let E “ EΦ for some Φ P MatrˆmpZq and n
be the dimension of E. Then

EpZ´1q “ p´1qnEpZq.

2.6. The submonoids FE,A and subsets FE,A of E “ EΦ. Let E “ EΦ for some

Φ P MatrˆmpZq. We define submonoids FE,A and subsets FE,A of E where A is an
element of the lattice of supports LpEq of E. We formulate some reciprocity results
for their generating functions.

For A P LpEq, define

FE,A :“ tα P E | supppαq Ď Au,

FE,A :“ tα P E | supppαq “ Au.

The first set, FE,A, is a submonoid of E. The convex cone CFE,A
is the unique

(cf. Theorem 2.18) face of CE whose support is A. In other words, CFE,A
is the

inverse image of A under the map in (2.18). The second set FE,A is a subset of E
and is the interior of FE,A. Clearly, E “ FE,rms and

(2.7) FE,A “
ď

BPLpEq,BĎA

FE,B,

where the union is disjoint.

Remark 2.23. If α P FE,A, then the i-th coordinate of α is zero for all i P rmszA.
Therefore, the coordinates rmszA of FE,A may be discarded. That way FE,A “ EΦA

,
where ΦA is the matrix found by removing the columns rmszA from Φ and deleting
resulting dependent rows.

Remark 2.24. For every A P LpEq, let ZA be the tuple pZjqjPrms where Zj is an
indeterminate for j P A and Zj “ 0 for j P rmszA. Then FE,ApZq “ EpZAq.

The following proposition is a reciprocity result for the submonoids FE,A Ď E and

subsets FE,A Ď E.

Proposition 2.25. Let E “ EΦ for some Φ P MatrˆmpZq. For all A P LpEq,

FE,ApZ´1q “ p´1qdimFE,AFE,ApZq “ p´1qdimFE,A
ÿ

BPLpEq,BĎA

FE,BpZq.(2.8)

Proof. The first equality is an application of Theorem 2.22 to FE,A, which is applicable

because of Remark 2.23. Recall that FE,A is the interior of FE,A. Using (2.7), the
second equality follows. □

Corollary 2.27 states an alternative reciprocity result for FE,A that is analogous to
[18, Lemma 2.17]. To prove it, we need the following lemma.

Lemma 2.26. Let E “ EΦ for some Φ P MatrˆmpZq. For all A,C P LpEq with
A Ď C,

(2.9)
ÿ

BPLpEq,AĎBĎC

p´1qdimFE,B “

#

p´1qdimFE,A if A “ C,

0 otherwise.
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Proof. If A “ C, then the summation in (2.9) has exactly one summand, namely
p´1qdimFE,A . In general, the set tB P LpEq | A Ď B Ď Cu is an interval in LpEq.
If A ‰ C, then it is a non-trivial interval. Combining Proposition 2.14 with The-
orem 2.18, we find that LpEq is an Eulerian poset where the rank of B P LpEq

is dimFE,B. Recall that Eulerian means that in every non-trivial interval, the number
of elements of even rank and the number of elements of odd rank coincide. Therefore,
the summation (2.9) completely cancels out if A ‰ C. □

Corollary 2.27. Let E “ EΦ for some Φ P MatrˆmpZq and n be the dimension of E.
Let A Ď supppEq be such that A P LpEq or supppEqzA P LpEq. Then

(2.10)
ÿ

BPLpEq,BĚA

FE,BpZ´1q “ p´1qn
ÿ

CPLpEq,CĚsupppEqzA

FE,CpZq.

Proof (adapted from [18, Lemma 2.17]). Using (2.8), we find that
ÿ

BPLpEq,BĚA

FE,BpZ´1q “
ÿ

BPLpEq,BĚA

p´1qdimFE,B
ÿ

CPLpEq,CĎB

FE,CpZq

“
ÿ

CPLpEq

¨

˝

ÿ

BPLpEq,BĚCYA

p´1qdimFE,B

˛

‚FE,CpZq,(2.11)

where we used that dimFE,B “ dimFE,B. If A P LpEq, then also A Y C P LpEq

for C P LpEq. Therefore it follows from Lemma 2.26, that the expression between
brackets in (2.11) is p´1qd when C Y A “ supppEq or equivalently C Ě supppEqzA,
and zero otherwise. Thus (2.10) holds if A P LpEq. Notice that the roles of A and
supppEqzA in (2.10) are symmetric, so (2.10) also holds if supppEqzA P LpEq. □

2.7. The subsets IE,A,C of E “ EΦ. Let E “ EΦ for some Φ P MatrˆmpZq. We
define subsets IE,A,C of E for all A,C P LpEq with A Ď C. We show a reciprocity
result for their generating functions and specify a decomposition as a disjoint union
of interiors of simplicial monoids.

For all A,C Ď rms with A Ď C, define

IE,A,C :“ tα P E | A Ď supppαq Ď Cu.

In other words, the elements in IE,A,C are the elements of E that have positive entries
in the coordinates indexed by elements in A, non-negative entries in the coordinates
indexed by elements in CzA and zeroes elsewhere. Obviously,

(2.12) IE,A,C “
ď

BPLpEq,AĎBĎC

FE,B,

where the union is disjoint.
We formulate a reciprocity result for IE,A,C when A,C P LpEq and CzA P LpEq.

Proposition 2.28. Let E “ EΦ for some Φ P MatrˆmpZq. Suppose that A,C P LpEq

with A Ď C and CzA P LpEq. Then

(2.13) IE,A,CpZ´1q “ p´1qdim IE,A,CIE,CzA,CpZq.

Proof. By (2.12),

(2.14) IE,A,CpZ´1q “
ÿ

BPLpEq,AĎBĎC

FE,BpZ´1q.
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By (2.8), it follows that

IE,A,CpZ´1q “
ÿ

BPLpEq,AĎBĎC

p´1qdimFE,B
ÿ

DPLpEq,DĎB

FE,DpZq(2.15)

“
ÿ

DPLpEq,DĎC

¨

˝

ÿ

BPLpEq,AYDĎBĎC

p´1qdimFE,B

˛

‚FE,DpZq.

Since, A and D are in LpEq, it follows that AYD P LpEq. Therefore by Lemma 2.26,

the expression between brackets is p´1qdimFE,C when A Y D “ C, or equivalently
CzA Ď D, and zero otherwise. Thus we find

IE,A,CpZ´1q “
ÿ

DPLpEq,CzAĎDĎC

p´1qdimFE,CFE,DpZq.

Since p´1qdimFE,C does not depend on D, it may be pulled out of the summation.
Using (2.12), and the fact that dimFE,C “ dim IE,A,C , we then find (2.13). □

The following proposition gives a decomposition of IE,A,C as a disjoint union of
interiors of simplicial monoids.

Proposition 2.29. Let E “ EΦ for some Φ P MatrˆmpZq and A,C P LpEq with
A Ď C. There is a finite family Γ “ tKuuuPU of simplicial monoids Ku Ď Nm

0 such
that

‚ IE,A,C “
Ť

uPU Ku and this union is disjoint,
‚ CFpKuq Ď CFpEq for all u P U .

Proof. (2.12) already writes IE,A,C as a disjoint union of interiors of monoids FE,B,
but these are not simplicial in general. By Remark 2.23 and Remark 2.15, CFE,B

is a pointed convex polyhedral cone with extreme rays generated by the completely
fundamental elements of FE,B. Since CFE,B

is a face of CE , the completely funda-
mental elements of FE,B are all completely fundamental elements of E. Therefore,
by Proposition 2.13, CFE,B

has a triangulation ΓB “ tKuuuPUB
, where each Ku for

u P UB is a simplicial polyhedral cone and the one-dimensional faces are generated by
a completely fundamental element of E. Let U˝

B be the set of u P UB such that Ku

is not contained in any of the facets of CFE,B
. Equivalently, U˝

B is the set of u P UB

such that relintpKuq is contained in relintpCFE,B
q. Set Ku “ Ku X FE,B for u P U˝

B.
Then

FE,B “ relintpCFE,B
q X FE,B “

ď

uPU˝
B

relintpKuq X FE,B “
ď

uPU˝
B

Ku.

Setting U “
Ť

BPLpEq,AĎBĎC U˝
B, we find using (2.12) that

Ť

uPU Ku “ IE,A,C and this

union is disjoint because the Ku coming from the same triangulation ΓB are disjoint,
and the union in (2.12) is also disjoint. □

3. The subsets GI,σ and HI,J of Nd`d1

0

In this section, we define the specific subsets of Nm
0 that are used in the later sections

to write down formulas for the considered subalgebra zeta functions. In Sections 3.1

and 3.4, we define monoids Eσ Ď Nmσ
0 and En.o. Ď Nd`d1`1

0 . In Sections 3.2 and 3.3,

we discuss subsets GI,σ of Nd`d1

0 , which are used to express a formula for ζf2,dpoqpsq

in Section 4.4 and ζwf2,dpoq
psq in Section 5.1. In Section 3.5, we discuss subsets HI,J

of Nd`d1

0 , which are used to express a formula for ζn.o.f2,dpoq
psq in Section 5.2. We also

prove some properties of the associated generating functions that are used to prove
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properties of ζf2,dpoqpsq, ζwf2,dpoq
psq, and ζn.o.f2,dpoq

psq in Section 5. Dyck words and the

relation between the GI,σ and HI,J are discussed in Section 3.6.

3.1. The monoids Eσ Ď Nmσ
0 . Set d1 :“

`

d
2

˘

. We define monoids Eσ Ď Nmσ
0 for

certain permutations σ P S2d1 . This is done by defining a matrix Φσ and setting
Eσ “ EΦσ as in (2.4).

The permutations σ P S2d1 for which we define a monoid Eσ are the following:

Definition 3.1. Let S2d1 be the set of permutations σ P S2d1 such that

(3.1) |tl P ris | σplq ď d1u| ď |tl P ris | σplq ą d1u|

for all i P r2d1s and if i ă j P r2d1s are such that σpiq, σpjq P rd1s and σpiq ą σpjq, then

σpiq ą σpi ` 1q ą ¨ ¨ ¨ ą σpj ´ 1q ą σpjq.

Example 3.2. Let d “ d1 “ 3. Then 123456 R S2d1 as (3.1) is not satisfied for i P r5s.
Also 653421 R S2d1 because 3 ă 5 are such that σp3q “ 3, σp5q “ 2 P r3s, and
σp3q “ 3 ą σp5q “ 2, yet σp3q “ 3 ą σp4q “ 4 ą σp5q “ 2. However, 451632 P S2d1 .

We formalize a way to identify each element of the set
␣

pi, jq P rds2 | i ă j
(

\ rd1s

by a unique integer in r2d1s.

Definition 3.3. Define the bijection

b :
␣

pi, jq P rds2 | i ă j
(

\ rd1s Ñ r2d1s :

pi, jq ÞÑ d1 ` j ´ 1 ` pi ´ 1qp2d ´ 2 ´ iq{2

j ÞÑ j.

Remark 3.4. The map b respects the lexicographical ordering of the pairs pi, jq with
i ă j.

Example 3.5. If d “ 4, then b maps

1 ÞÑ 1, 4 ÞÑ 4, p1, 2q ÞÑ 7, p2, 3q ÞÑ 10,

2 ÞÑ 2, 5 ÞÑ 5, p1, 3q ÞÑ 8, p2, 4q ÞÑ 11,

3 ÞÑ 3, 6 ÞÑ 6, p1, 4q ÞÑ 9, p3, 4q ÞÑ 12.

Next, we associate a tuple of length d`d1 to every element of r2d1s. For i P rd`d1s,

let δi P Nd`d1

0 be the tuple whose ith entry is one, while the other entries are zero.

Recall that we write xpmq for the tuple pxqjPrms.

Definition 3.6 (Corresponding tuple). Let i P rd1s. The tuple vi corresponding to i is

vi :“
d`d1
ÿ

k“d`i

δk “ p0pd`i´1q, 1pd1´i`1qq.

Let i P d1 ` rd1s and b´1piq “ pj, kq. The tuple vi corresponding to i is

vi :“
d
ÿ

l“j

δl `

d
ÿ

l“k

δl “ p0pj´1q, 1pk´jq, 2pd´k`1q, 0pd1qq.

For i, j P rd ` d1s, let vi,j be the j-th component of vi.

Example 3.7. Let d “ 3 and i “ 4. Then b´1piq “ p1, 2q and v4 “ p1, 2, 2, 0, 0, 0q.
Now let i “ 5. Then b´1piq “ p1, 3q and v5 “ p1, 1, 2, 0, 0, 0q.

Using the integers vi,j , we define the matrix Φσ and monoid Eσ.
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Definition 3.8. Let σ P S2d1 ,

Rσ :“
␣

i P r2d1 ´ 1s | σpiq ą d1 or σpi ` 1q ą d1
(

,

rσ :“ |Rσ|, and mσ :“ d ` d1 ` rσ. Let wσ
i,j :“ vσpiq,j ´ vσpi`1q,j for i P r2d1 ´ 1s and

j P rd ` d1s. Then Φσ is the rσ ˆ mσ-matrix, whose row corresponding to i P Rσ has

wσ
i,j in column j P rd ` d1s,

´1 in column d ` d1 ` i,
0 in the remaining columns.

Let Eσ be the monoid EΦσ associated with the matrix ΦI,σ as in (2.4).

Remark 3.9. The matrix Φσ in Definition 3.8 is only defined for permutations σ P S2d1

instead of all σ P S2d1 , partially in order for Eσ XNm to be non-empty as Remark 2.16
requires.

Example 3.10. Let σ “ 451632 P S6. Then rσ “ 4, mσ “ 10, and

Φσ “

¨

˚

˚

˝

0 1 0 0 0 0 ´1 0 0 0
1 1 2 ´1 ´1 ´1 0 ´1 0 0
0 ´1 ´2 1 1 1 0 0 ´1 0
0 1 2 0 0 ´1 0 0 0 ´1

˛

‹

‹

‚

.

3.2. The subsets GI,σ Ď Nd`d1

0 . We define subsets GI,σ Ď Nd`d1

0 for certain pairs
pI, σq with I Ď rd´1s and σ P S2d1 . These sets GI,σ are used in Sections 4.4 and 5.1 to
write down formulas for ζf2,dpoqpsq and ζwf2,dpoq

psq. The pairs pI, σq for which we define

a set GI,σ are the following:

Definition 3.11. Let Wd be the set of pairs pI, σq with I Ď rd ´ 1s and σ P S2d1

such that the following system of inequalities in the variables r1, . . . , rd has non-zero
solutions in Nd

0:

(3.2)

$

’

’

’

&

’

’

’

%

ri ą 0 for i P I,

ri “ 0 for i P rd1 ´ 1szI,
řd

k“1pvi,k ´ vj,kqrk ą 0 for i, j P d ` rd1s with σ´1piq ă σ´1pjq and i ă j,
řd

k“1pvi,k ´ vj,kqrk ě 0 for i, j P d ` rd1s with σ´1piq ă σ´1pjq and i ą j.

Example 3.12. Let d “ 2, so d1 “ 1. The set S2 contains only 21. If I “ H,
then (3.2) reduces to one equation: r1 “ 0, and therefore any r2 P N together with
r1 “ 0 gives a non-zero solution. If I “ t1u, then (3.2) reduces to one inequality:
r1 ą 0, and therefore any pair r1 P N, r2 P N0 gives a non-zero solution. Thus
W2 “ tpH, 21q, pt1u, 21qu.

For σ P S2d1 , let Ascpσq :“ ti P r2d1s | σpiq ă σpi ` 1qu and Despσq :“ ti P r2d1s |

σpiq ą σpi ` 1qu. Let r and s be short for r1, . . . , rd and s1, . . . , sd1 respectively.

Definition 3.13. Write Nd`d1

0 “ tpr, sq | ri, sj P N0u. For pI, σq P Wd, the set GI,σ is

the set of tuples pr, sq P Nd`d1

0 that satisfy the following equations and inequalities:
$

’

’

’

’

&

’

’

’

’

%

ri ą 0 for i P I,(3.3)

ri “ 0 for i P rd ´ 1szI,(3.4)
řd

j“1w
σ
i,jrj `

řd1

j“1w
σ
i,d`jsj ą 0 for i P Ascpσq,(3.5)

řd
j“1w

σ
i,jrj `

řd1

j“1w
σ
i,d`jsj ě 0 for i P Despσq.(3.6)

Example 3.14. Let d “ 2 and pI, σq “ pt1u, 21q. Then GI,σ is the set of tuples
pr1, r2, s1q P N3

0 such that r1 ą 0 and r1 ` 2r2 ´ s1 ě 0.
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Remark 3.15. The set Wd is designed in order for the sets GI,σ to be non-empty.

Remark 3.16. The dimension of GI,σ is d ` d1 ´ |rd ´ 1szI|. Therefore

max tdimGI,σ | pI, σq P Wdu “ d ` d1,

and the maximum is attained for the pairs pI, σq P Wd with I “ rd ´ 1s.

We describe which entries sj of pr, sq are positive when pr, sq P GI,σ.

Definition 3.17. For σ P S2d1 , define

Jσ :“ tj P rd1 ´ 1s | σ´1pjq ă σ´1pj ` 1qu.

Example 3.18. Let d “ 2 and pI, σq “ pt1u, 21q. Then Jσ “ H.

Proposition 3.19. Let pr, sq P GI,σ. If j P Jσ, then sj ą 0. If j P rd1 ´ 1szJσ, then
sj “ 0.

Proof. Let j P Jσ, i.e. σ
´1pjq ă σ´1pj ` 1q. Then summing the common left-hand

side of (3.5) and (3.6) over i P rσ´1pjq, σ´1pj `1q ´1s results in sj . There necessarily
is an ascent in the interval rσ´1pjq, σ´1pj ` 1q ´ 1s. Therefore summing (3.5) over
i P rσ´1pjq, σ´1pj`1q´1sXAscpσq and (3.6) over i P rσ´1pjq, σ´1pj`1q´1sXDespσq

results in sj ą 0. Now let j P rd1 ´1szJσ, i.e. σ
´1pjq ą σ´1pj`1q. Then summing the

common left-hand side of (3.5) and (3.6) over i P rσ´1pj ` 1q, σ´1pjq ´ 1s results in
´sj . Because σ P S2d1 , there can only be descents the interval rσ´1pj`1q, σ´1pjq´1s.
Thus summing (3.6) over i P rσ´1pj ` 1q, σ´1pjq ´ 1s results in ´sj ě 0, from which
we deduce sj “ 0. □

3.3. Alternative description of GI,σ. In (2.7) we defined subsets IE,A,C of E,
where A and C encoded which entries were positive and non-negative, respectively.
We now describe GI,σ using such a set IE,A,C where E “ Eσ from Section 3.1.

Definition 3.20. For σ P S2d1 , let tji | i P rrσsu “ Rσ with j1 ě ¨ ¨ ¨ ě jrσ . For every
pI, σq P Wd, let AI,σ and CI,σ be the following subsets of rms:

AI,σ :“ I Y pd ` Jσq Y
`

d ` d1 ` ti P rrσs | ji P Ascpσqu
˘

,

CI,σ :“ I Y pd ` Jσq Y
␣

d, d ` d1
(

Y
`

d ` d1 ` rrσs
˘

.

Example 3.21. Let d “ 2 and pI, σq “ pt1u, 21q. Then At1u,21 “ t1u and Ct1u,21 “

t1, 2, 3, 4u.

Proposition 3.22. Let pI, σq P Wd. Let pr : Nmσ Ñ Nd`d1

be the projection map
which ignores the last rσ coordinates. Restricting this projection map to the subset
IEσ ,AI,σ ,CI,σ

Ď Eσ Ď Nmσ results in a bijection between IEσ ,AI,σ ,CI,σ
and GI,σ.

Proof. Let γ be short for γ1, . . . , γrσ . Suppose that pr, s,γq P IEσ ,AI,σ ,CI,σ
. Then (3.3)

is satisfied because I Ď AI,σ and (3.4) is satisfied because prd´1szIqXCI,σ “ H. Also
(3.6) is satisfied for all i P Rσ because of the definition of Φσ and d`d1 ` rrσs Ď CI,σ.
If i is, moreover, an ascend, then (3.5) holds because d`d1 ` ti P rrσs | ji P Ascpσqu P

AI,σ. If i P DespσqzRσ, i.e. σpi ` 1q ă σpiq P rd1s, then σpi ` 1q ` 1 “ σpiq (because
σ P S2d1) and therefore (3.6) simplifies to ´sσpi`1q ě 0. As σpi`1q is in rd1 ´1szJσ and
therefore d`σpi`1q is not in CI,σ, it follows that sσpi`1q “ 0 and therefore (3.6) holds.

If i P AscpσqzRσ, i.e. σpiq ă σpi` 1q ď d1, then (3.5) simplifies to
řσpi`1q

j“σpiq`1 sj ą 0. If

σ´1pσpiq ` 1q ă i, then σpiq ` 1 P Jσ and therefore d ` σpiq ` 1 P d ` Jσ Ď AI,σ and
sσpiq`1 ą 0. If σ´1pσpiq `1q ą i, then σpiq P Jσ and therefore d`σpiq P d`Jσ Ď AI,σ

and sσpiq ą 0. In any case (3.5) holds. Thus we have that pr, sq P GI,σ.
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The restricted projection map pr|IEσ,AI,σ,CI,σ
is injective because γ are slack vari-

ables, therefore are uniquely determined by pr, sq. To prove that it is surjective, let
pr, sq P GI,σ. Again because γ are slack variables, we can find pγjqjPrrσs such that
pr, s,γq P Eσ. Because of (3.3) and (3.4), we know that for i P rd ´ 1s, ri ą 0 if
and only if i P AI,σ and otherwise i R CI,σ. Using Proposition 3.19, we find that for
j P rd1 ´ 1s, sj ą 0 if and only if d ` j P pd ` Jσq Ď AI,σ and otherwise d ` i R CI,σ.
We conclude that pr, s,γq P IEσ ,AI,σ ,CI,σ

. □

Let X “ pXiqiPrds, Y “ pYjqjPrd1s and Z “ pZkqkPrrσs be tuples of indeterminates.
The generating series enumerating the elements of Eσ, GI,σ, and IEσ ,AI,σ ,CI,σ

as in
Section 2.5 are denoted by EσpX,Y,Zq, GI,σpX,Yq, and IEσ ,AI,σ ,CI,σ

pX,Y,Zq re-
spectively. By Proposition 3.22, it follows that IEσ ,AI,σ ,CI,σ

pX,Y,1q “ GI,σpX,Yq,
where 1 is the all-one tuple of length rσ.

Often, we will use the following subdivision of IEσ ,AI,σ ,CI,σ
into simplicial monoids,

which exists because of Proposition 2.29.

Definition 3.23. For every pI, σq P Wd, let ΓI,σ “ pKuquPUI,σ
be a family of simplicial

monoids Ku Ď Nmσ
0 such that

‚ IEσ ,AI,σ ,CI,σ
“
Ť

uPUI,σ
Ku and this union is disjoint,

‚ CFpKuq Ď CFpEσq for all u P U .

Example 3.24. Let pI, σq “ pH, 21q. Then mσ “ 4 and Eσ contains all tuples
pr1, r2, s1, γ1q P N4

0 such that r1 ` 2r2 ´ s1 ´ γ1 “ 0. Moreover, AI,σ “ H and
CI,σ “ t2, 3, 4u. It follows that IEσ ,AI,σ ,CI,σ

contains all tuples pr1, r2, s1, γ1q P N4
0

such that 2r2 ´ s1 ´ γ1 “ 0 and r1 “ 0. One possible ΓI,σ “ tKu | u P UI,σu is the
following family pK0,K1,K2,K3q:

K0 “ tp0, 0, 0, 0qu,

K1 “ tp0, r2, s1, 0q P N4
0 | 2r2 ´ s1 “ 0u,

K2 “ tp0, r2, 0, γ1q P N4
0 | 2r2 ´ γ1 “ 0u,

K3 “ tp0, r2, s1, γ1q P N4
0 | 2r2 ´ s1 ´ γ1 “ 0u,

where K3 is simplicial because it has quasigenerators p0, 1, 2, 0q and p0, 1, 0, 2q.

3.4. The monoid En.o. Ď Nd`d1`1
0 . We define a monoid En.o. Ď Nd`d1`1

0 , again via
a matrix Φn.o.. We list its completely fundamental elements, define a specific subset
E0 and describe a specific triangulation of the cone CEn.o. generated by En.o..

Definition 3.25. Let Φn.o. be the 1 ˆ pd ` d1 ` 1q matrix

(3.7) Φn.o. :“ r0pd´2q, 1, 2, p´1qpd1`1qs.

Let En.o. Ď Nd`d1`1
0 be the monoid EΦn.o. as in (2.4).

Recall from Remark 2.15 that the convex cone CEn.o. generated by En.o. is a pointed
convex polyhedral cone. The completely fundamental elements of En.o. each lie on
an extreme ray of CEn.o. . Therefore by Theorem 2.18, the completely fundamental
elements of En.o. correspond to the minimal (non-empty) supports in LpEn.o.q. By
(3.7), we see that the minimal (non-empty) supports in LpEn.o.q are

$

&

%

tiu for i P rd ´ 2s;(3.8)

td ´ 1, iu for i P d ` rd1 ` 1s;(3.9)

td, iu for i P d ` rd1 ` 1s.(3.10)
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For i P rd`d1 `1s, let δi P Nd`d1`1
0 be the ith unit basis vector. The 2d1 `d completely

fundamental elements of En.o. are the following:

$

&

%

δi for i P rd ´ 2s;(3.11)

δd´1 ` δi for i P d ` rd1 ` 1s;(3.12)

δd ` 2δi for i P d ` rd1 ` 1s.(3.13)

Special attention will go to one specific completely fundamental element, namely
δd ` 2δd`d1`1.

By Theorem 2.18, the 2-faces of CEn.o. can be found by looking at the elements
of LpEn.o.q that contain at least one of the sets in (3.8)-(3.10), yet do not strictly
contain any non-empty elements of LpEn.o.q that are not listed in (3.8)-(3.10). We are
especially interested in the 2-faces of CEn.o. that contain δd ` 2δd`d1`1. The elements
of LpEn.o.q that contain td, d ` d1 ` 1u and do not strictly contain any non-empty
elements of LpEn.o.q not listed in (3.8)-(3.10) are the following:

$

&

%

ti, d, d ` d1 ` 1u for i P rd ´ 2s;(3.14)

td ´ 1, d, d ` d1 ` 1u;(3.15)

td, i, d ` d1 ` 1u for i P d ` rd1s.(3.16)

Note that the sets td ´ 1, d, i, d ` d1 ` 1u for i P d ` rd1s are elements of LpEn.o.q, but
they strictly contain the set td ´ 1, d, d ` d1 ` 1u, which is not listed in (3.8)-(3.10),
and therefore they do not correspond to a 2-face. The 2-faces of CEn.o. that contain
δd ` 2δd`d1`1 are thus generated by

$

&

%

tδd ` 2δd`d1`1, δiu for i P rd ´ 2s;(3.17)

tδd ` 2δd`d1`1, δd´1 ` δd`d1`1u;(3.18)

tδd ` 2δd`d1`1, δd ` 2δiu for i P d ` rd1s.(3.19)

Definition 3.26. Let C0 be the subcone (not a face) of CEn.o. generated by the set

tδi | i P rd ´ 2su Y tδd´1 ` δd`d1`1u Y tδd ` 2δi | i P d ` rd1 ` 1su,

and let E0 “ C0 X En.o..

Remark 3.27. Being generated by d ` d1 linearly independent elements of En.o., C0

and E0 are simplicial and have dimension d ` d1.

Proposition 3.28 (adaptation of [14, Lem. 4.5.1]). The pointed polyhedral cone CEn.o.

has a triangulation Γ “ pKuquPU whose one-dimensional faces are the extreme rays of
CEn.o. and there is a u P U with Ku “ C0.

Proof. Use the algorithm in the proof of [14, Lem. 4.5.1], while ordering the extreme
rays generated by each of the elements of (3.26) that are not δd ` 2δd`d1`1 first. □

Remark 3.29. By definition, C0 contains all 2-faces of CEn.o. that contain δd`2δd`d1`1.
Therefore in the triangulation Γ from Proposition 3.28, the faces of C0 are the only
elements that contain δd ` 2δd`d1`1.

3.5. The subsets HI,J Ď Nd`d1

0 . We define subsets HI,J Ď Nd`d1

0 for every I Ď rd´1s

and J Ď rd1 ´ 1s. These subsets are used in Section 5.2 to write down a formula for
ζn.o.f2,dpoq

psq.
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Definition 3.30. For every I Ď rd ´ 1s and J Ď rd1 ´ 1s, let HI,J be the set of tuples

pr, sq P Nd`d1

0 that satisfy the following equations and inequalities:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ri ą 0 for i P I,(3.20)

ri “ 0 for i P rd ´ 1szI,(3.21)

sj ą 0 for j P J,(3.22)

sj “ 0 for j P rd1 ´ 1szJ,(3.23)

rd´1 ` 2rd ´
řd1

j“1 sj ě 0.(3.24)

Example 3.31. Let d “ 2, I “ t1u, and J “ H. Then HI,J is the set of tuples
pr1, r2, s1q P N3

0 such that r1 ą 0 and r1 ` 2r2 ´ s1 ě 0.

Just as Proposition 3.22 described GI,σ as a set of the form IEσ ,A,C , we now describe
the sets HI,J as sets of the form IEn.o.,A,C .

Definition 3.32. For every I Ď rd ´ 1s and J Ď rd1 ´ 1s, let AI,J and CI,J be the
following subsets of rd ` d1 ` 1s:

AI,J :“ I Y pd ` Jq,

CI,J :“ I Y pd ` Jq Y td, d ` d1, d ` d1 ` 1u.

Example 3.33. Let d “ 2, I “ t1u, and J “ H. Then At1u,H “ t1u Y H and
Ct1u,H “ t1u Y H Y t2, 3, 4u.

Proposition 3.34. Let pr : Nd`d1`1 Ñ Nd`d1

be the projection map which ignores
the last coordinate. For every I Ď rd ´ 1s and J Ď rd1 ´ 1s, restricting this projection

map to the subset IEn.o.,AI,J ,CI,J
Ď En.o. Ď Nd`d1`1 results in a bijection between

IEn.o.,AI,J ,CI,J
and HI,J .

Proof. Suppose that pr, s, γ1q P IEn.o.,AI,J ,CI,J
. Then (3.20) is satisfied because I Ď

AI,J and (3.21) is satisfied because prd ´ 1szIq X CI,J “ H. Also (3.22) is satisfied
because pd ` Jq Ď AI,J and (3.23) is satisfied because pd ` prd1 ´ 1szJqq X CI,J “ H.
Lastly (3.24) follows from the definition of Φn.o.. Thus pr, sq P HI,J .

Suppose that pr, sq P HI,J . Let γ1 “ rd´1 ` 2rd ´
řd1

j“1 sj . Then pr, s, γ1q P

IEn.o.,AI,J ,CI,J
. Moreover, this is the unique element γ1 P N0 such that pr, s, γ1q P

IEn.o.,AI,J ,CI,J
Ď En.o., because if pr, s, γ1q P En.o., then rd´1 ` 2rd ´

řd1

j“1 sj ´ γ1 “ 0.
□

Remark 3.35. Note that

En.o. “
ď

IĎrd´1s,JĎrd1´1s

IEn.o.,AI,J ,CI,J
,

and this union is disjoint.

We record the following reciprocity result for the generating functions HI,JpX,Yq.

Proposition 3.36. Let K Ď rd ´ 1s and L Ď rd1 ´ 1s, then
ÿ

IĎrd´1s,IĚK,
JĎrd1´1s,JĚL

HI,JpX´1,Y´1q “ p´1qd`d1
ÿ

IĎrd´1s,IĚrd´1szK,
JĎrd1´1s,JĚrd1´1szL

XdYd1HI,JpX,Yq.

Proof. By Proposition 3.34 and (2.12),

HI,JpX´1,Y´1q “ IEn.o.,AI,J ,CI,J
pX´1,Y´1, 1q “

ÿ

BPLpEn.o.q,
AI,JĎBĎCI,J

FEn.o.,BpX´1,Y´1, 1q.
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Therefore summing over I Ě K and J Ě L results in
ÿ

IĚK,JĚL

HI,JpX´1,Y´1q “
ÿ

BPLpEn.o.q,AK,LĎB

FEn.o.,BpX´1,Y´1, 1q.

Note that any subset of rd ` d1 ` 1s that contains d and d ` d1 is an element of the
lattice of supports LpEn.o.q. In particular, rd` d1 ` 1szAK,L is an element of LpEn.o.q.
Therefore, we may use Corollary 2.27 to obtain

ÿ

IĚK,JĚL

HI,JpX´1,Y´1q “ p´1qdimpEn.o.q
ÿ

DPLpEn.o.q,
DĚrd`d1`1szAK,L

FEn.o.,DpX,Y, 1q.

The dimension of En.o. is d ` d1 because it is a subset of Nd`d1`1 subjected to one
linear equation. If D P LpEn.o.q with D Ě rd ` d1 ` 1szAK,L, then there are unique
subsets I Ď rd ´ 1s and J Ď rd ´ 1s containing rd ´ 1szK and rd1 ´ 1szL respectively
such that D “ CI,J and vice versa. Thus

ÿ

IĚK,JĚL

HI,JpX´1,Y´1q “ p´1qd`d1
ÿ

IĚrd´1szK,
JĚrd1´1szL

FEn.o.,CI,J
pX,Y, 1q.

It is easy to verify that for I Ď rd ´ 1s and J Ď rd1 ´ 1s, the map

FEn.o.,CI,J
ÝÑ HI,J : pa1, . . . , ad, b1, . . . , bd1 , zq ÞÝÑ pa1, . . . , ad ´ 1, b1, . . . , bd1 ´ 1q

is a (well-defined) bijection. Thus

FEn.o.,CI,J
pX,Y, 1q “ XdYd1HI,JpX,Yq. □

3.6. Dyck words and the relation between HI,J and GI,σ. We associate a Dyck
word wσ to permutations σ P S2d1 . Afterwards, we describe how the sets GI,σ and
HI,J are related.

A Dyck word of length 2d1 is a word w in the letters 0 and 1 such that 0 and 1
each occur d1 times in w and no initial segment of w contains more ones than zeroes.
For example, 001011 is a Dyck word of length 6, whereas 011001 is not as the initial
segment 011 contains more ones than zeroes. We write D2d1 for the set of Dyck words
of length 2d1. The Dyck word 0d

1

1d
1

P D2d1 is called the trivial Dyck word of length
2d1.

Definition 3.37. Let σ P S2d1 . The Dyck word wσ associated with σ is the Dyck word
of length 2d1 where for each i P r2d1s, the i-th letter of wσ is 0 if σpiq ą d1 and 1 if
σpiq ď d1.

Example 3.38. Let d “ 3 and σ “ 451623 P S6. Then wσ “ 001011 “ 021012.

Remark 3.39. Note that wσ is indeed a Dyck word because σ P S2d1 . It would not
necessarily be a Dyck word if σ was a general permutation in S2d1 .

The following proposition links the sets GI,σ and HI,J . Recall the definition of Jσ
in Definition 3.17.

Proposition 3.40. Let I Ď rd ´ 1s, J Ď rd1 ´ 1s, and

SI,J :“ tσ P S2d1 | pI, σq P Wd, Jσ “ J,wσ “ 0d
1

1d
1

u.

Then HI,J “
Ť

σPSI,J
GI,σ and this union is disjoint.

Proof. Suppose that σ P SI,J and pr, sq P GI,σ. Then (3.20) and (3.21) hold because
of (3.3) and (3.4). Using Proposition 3.19, we find that (3.22) and (3.23) hold. Lastly,

(3.24) holds because (3.24) is what (3.6) reduces to when wσ “ 0d
1

1d
1

and i “ d1. Thus
pr, sq P HI,J .
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Conversely, suppose that pr, sq P HI,J . Let σ P S2d1 be the unique permutation
such that

d
ÿ

j“1

vσpiq,jrj `

d1
ÿ

j“1

vσpiq,d`jsj ě

d
ÿ

j“1

vσpi`1q,jrj `

d1
ÿ

j“1

vσpi`1q,d`jsj

for every i P r2d1 ´ 1s and σpiq ą σpi ` 1q if equality holds. The inequality (3.24)
implies that tσpiq | i P rd1su “ d1 ` rd1s and tσpiq | i P d1 ` rd1su “ rd1s, therefore

wσ “ 0d
1

1d
1

. It also follows by this fact and the construction of σ that σ P S2d1 . Also
pI, σq P W2d1 because if r is non-zero, then it is a non-zero solution to (3.2), and if r
is zero, then I “ H, σpiq “ 2d1 ` 1 ´ i for i P rd1s, and δd1 is a non-zero solution to
(3.2). If j P Jσ, then summing the right-hand side minus the left-hand side of (3.6)
over all i P rσ´1pjq, σ´1pj ` 1q ´ 1s results in sj ą 0. Therefore Jσ Ď J . Similarly if
j P rd1´1szJσ, then summing the right-hand side minus the left-hand side of (3.6) over
all i P rσ´1pj ` 1q, σ´1pjq ´ 1s results in ´sj ě 0. Therefore rd1 ´ 1szJσ Ď rd1 ´ 1szJ
and we conclude that Jσ “ J . Obviously (3.3) and (3.4) hold because of (3.20) and
(3.21). Moreover, (3.5) and (3.6) hold by construction of σ. Thus pr, sq P GI,σ.

The disjointness follows from the definition of GI,σ. □

4. The subalgebra zeta function of f2,d

The main result in this section is Theorem 4.24, which gives an explicit formula for
ζf2,dpoqpsq. The remainder of the section works towards proving this formula.

4.1. An explicit infinite sum formula for ζf2,dpoqpsq. First, we derive Proposi-

tion 4.3, which provides an explicit infinite sum formula for ζf2,dpoqpsq. It consists of

an infinite summation over a subset of Nd`d1

0 with d1 :“
`

d
2

˘

, where each summand
is a product of Gaussian binomial coefficients and a power of qo. Recall that Pn

is the set of integer partitions of at most n (non-zero) parts, i.e. the set of tuples
λ “ pλiqiPrns P Nn

0 with λi ě λi`1 for i P rn ´ 1s. We start by associating a partition

µλ of length d1 with every partition λ of length d.

Definition 4.1. Given λ P Pd, let µλ P Pd1 be the integer partition pµjqjPrd1s such that

the multisets tµj | j P rd1su and tλi ` λi1 | i ă i1 P rdsu coincide.

Informally speaking, the integers µ1, . . . , µd1 are the integers λi ` λi1 brought into
non-ascending order.

Example 4.2. If λ “ p3, 2, 2, 0q, then µλ “ p5, 5, 4, 3, 2, 2q.

Recall that λ
pnq

1 :“ pλ1qiPrns P Pn and |pλiqiPrns| :“
řn

i“1 λi.

Proposition 4.3. For all d P Ně2 and cDVR o,

(4.1) ζf2,dpoqpsq “
ÿ

λPPd

ÿ

νPPd1 ,νďµλ

α
´

λ
pnq

1 , λ; o
¯

αpµλ, ν; oqq
´s|λ|
o q

pd´sq|ν|
o ,

where αpλ, µ; oq is discussed in Section 2.2.1.

Proof. Recall that, as an o-module, f2,dpoq is generated by txi | i P rdsu Y trxi, xjs |

i, j P rdsu. Let L1 be the rank-d submodule generated by txi | i P rdsu and L2 be the
rank-d1 submodule generated by trxi, xjs | i, j P rdsu. Hence f2,d “ L1 ‘ L2.

Given a submodule Λ ď f2,dpoq, we associate two submodules Λ1 and Λ2 of L1 and
L2 respectively. The second submodule, Λ2, is Λ X L2, while the first submodule Λ1

is the unique submodule Λ1 ď L1 such that pΛ1 ‘ L2q{pL1q “ pΛq{pL1q. This way Λ
is not necessarily equal to Λ1 ‘ Λ2, but it always holds that the index |f2,dpoq : Λ| is
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|L1 : Λ1| ¨ |L2 : Λ2|. The condition that Λ is a subalgebra of f2,dpoq is equivalent to
rΛ1,Λ1s being a submodule of Λ2. It follows from [8, Lemma 6.1] that

ζf2,dpoqpsq “
ÿ

Λ1ďL1

ÿ

Λ2ďL2
rΛ1,Λ1sďΛ2

|L1 : Λ1|´s|L2 : Λ2|d´s.

Recall Definition 2.8 of the elementary divisor type εpΛq of a submodule Λ. We write
the zeta function as a sum over the elementary divisor type of Λ1:

ζf2,dpoqpsq “
ÿ

λPPd

ÿ

Λ1ďL1
εpΛ1q“λ

|L1 : Λ1|´s
ÿ

Λ2ďL2
rΛ1,Λ1sďΛ2

|L2 : Λ2|d´s.

Let λ be the elementary divisor type εpΛ1q of Λ1 ď L1. Then
␣

πλi`λj | i ă j P rds
(

yields the elementary divisor type of rΛ1,Λ1s ď L2. Thus by Definition 4.1, µεpΛ1q is
the elementary divisor type εprΛ1,Λ1sq of rΛ1,Λ1s ď L2. When counting submodules
Λ2 ď L2 that contain a given submodule rΛ1,Λ1s, the only thing that is important
is the elementary divisor type of the given submodule rΛ1,Λ1s, see Proposition 2.10.
Since the elementary divisor type of rΛ1,Λ1s is completely determined by εpΛ1q, we
can conclude that counting submodules Λ2 that contain a given submodule rΛ1,Λ1s

is also completely determined εpΛ1q “ λ. Therefore, the last two summations in (4.1)
are independent counting problems, connected by the elementary divisor type of Λ1:

(4.2) ζf2,dpoqpsq “
ÿ

λPPd

¨

˚

˚

˝

ÿ

Λ1ďL1
εpΛ1q“λ

|L1 : Λ1|´s

˛

‹

‹

‚

¨

˚

˚

˝

ÿ

Λ2ďL2
MλďΛ2

|L2 : Λ2|d´s

˛

‹

‹

‚

,

where Mλ is any submodule of L2 that has elementary divisor type µλ.
The first counting problem (the first brackets), pertains to counting submodules

Λ1 ď L1 with fixed elementary divisor type. The solution to this first counting
problem is discussed in Proposition 2.9. The result in this case is

ÿ

Λ1ďL1
εpΛ1q“λ

|L1 : Λ1|´s “ αpλ
pnq

1 , λ; oqq
´s|λ|
o .

The second counting problem (the second brackets) pertains to counting submodules
Λ2 ď L2 that contain a given submodule Mλ of which we know the elementary
divisor type, namely µλ. The solution to this second counting problem is discussed
in Proposition 2.10 and the result in this case is

ÿ

Λ2ďL2
MλďΛ2

|L2 : Λ2|d´s “
ÿ

νPPd1

νďµλ

αpµλ, ν; oqq
pd´sq|ν|
o . □

The formula for ζf2,dpoqpsq in Proposition 4.3 is explicit, however not closed since it
contains infinite sums. In the following sections, the formula will be written as a finite
sum, where each summand will be a product of Gaussian multinomial coefficients and
a substitution of a series of the form (2.5). This will make the formula amenable to
computer algebra systems capable of enumerating integral points in polyhedra.

4.2. The factor αpµλ, ν; oq in terms of σλ,ν. We associate a permutation σλ,ν P

S2d1 with each pair pλ, νq P Pd ˆ Pd1 . Afterwards, we rewrite the factor αpµλ, ν; oq

that appeared in (4.1) as a product of a power of qo and a product of Gaussian
binomial coefficients that depends only on σλ,ν . Recall the definition of the map b
in Definition 3.3.
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Definition 4.4. Let λ P Pd and ν P Pd1 . Then σλ,ν is the permutation σ P S2d1 defined
inductively as follows. Consider the multiset Σ “ tλi `λjuiăjPrds Y tνiuiPrd1s. Let σp1q

be the maximal b-value among the indices of the elements of Σ which are maximal.
Now assume that i ą 1. To find σpiq, consider the subset of Σ comprising the elements
whose indices have an image under b that is not yet in tσpjq | j ă iu. Let σpiq be the
maximal b-value among the indices of the elements of this subset which are maximal.

Example 4.5. Let d “ 3, λ “ p5, 4, 1q, and ν “ p6, 2, 2q. Then λ1`λ2 “ 9, λ1`λ3 “ 6,
and λ2`λ3 “ 5, thus Σ “ t9, 6, 5, 6, 2, 2u. Clearly, λ1`λ2 “ 9 is the (unique) maximal
element of Σ. Therefore σp1q “ bpp1, 2qq “ 4. Among the remaining elements, both
λ1 ` λ3 “ 6 and ν1 “ 6 are maximal. Of the two, the index of λ1 ` λ3 has a greater
image under b, whence σp2q “ bpp1, 3qq “ 5. Among the remaining elements, ν1 “ 6 is
maximal, whence σp3q “ bp1q “ 1. Continuing in this way, we find that σλ,ν “ 451632.

Recall the definition of the set S2d1 in Definition 3.1.

Remark 4.6. Let λ P Pd and ν P Pd1 . Then ν ď µλ if and only if σλ,ν P S2d1 .

Next, we define integers Ljpσq and Mjpσq for all σ P S2d1 and j P t0u Y r2d1s. These
are related to the integers Mj and Lj from Definition 2.4 as is partially discussed in
the proof of Lemma 4.9.

Definition 4.7. For σ P S2d1 and j P t0u Y r2d1s, define L0pσq :“ 0, M0pσq :“ 0,

Ljpσq :“ #tσpiq | i P rjsu X pd1 ` rd1sq for all j P r2d1s,

Mjpσq :“ #tσpiq | i P rjsu X rd1s for all j P r2d1s.

Example 4.8. Let d “ 3, σ “ 451623 P S6, and j “ 3. Then L3pσq “ |t4, 5, 1u X

t4, 5, 6u| “ 2 and M3pσq “ |t4, 5, 1u X t1, 2, 3u| “ 1.

Recall that Ascpσq :“ ti P r2d1s | σpiq ă σpi ` 1qu. The following lemma writes the
product of Gaussian binomial coefficients in (2.3) in a way that only depends only on
σλ,ν , using the integers Ljpσq and Mjpσq from Definition 4.7.

Lemma 4.9. Let λ P Pd and ν P Pd1 be integer partitions with ν ď µλ. Let σ :“
σλ,ν P S2d1 and Mj and Lj be as in Definition 2.4 with µ “ µλ. Let r :“ |Ascpσq| ` 1
and tji | i P rr ´ 1su :“ Ascpσq with ji ă ji`1 for i P rr ´ 2s. Moreover, set j0 :“ 0
and jr :“ 2d1. Then

ź

jPr2d1s

ˆ

Lj ´ Mj´1

Mj ´ Mj´1

˙

q´1
o

“
ź

iPrrs

ˆ

Ljipσq ´ Mji´1pσq

Mjipσq ´ Mji´1pσq

˙

q´1
o

.

Proof. For i P rrs, let ki be the smallest element of pji´1, jis such that mki “ mki`1 “

¨ ¨ ¨ “ mji . It follows directly that Lki “ Lki`1 “ ¨ ¨ ¨ “ Lji and Mki “ Mki`1 “

¨ ¨ ¨ “ Mji . It also follows that mki´1 ą mki . We claim that Mji´1 “ Mji´1`1 “ ¨ ¨ ¨ “

Mki´1 as well. Indeed, suppose that Mj ‰ Mj`1 for some j P rji´1, ki ´ 1q. Then
mj ą mj`1 and there is a νl with νl “ mj`1, that is, there is a j1 P rj ` 1, kiq with
σpj1q “ l P rd1s. By construction, mj`1 ě mki´1 ą mki “ mji , thus we find that
mj ą mj`1 “ νl ą mji . Both if σpjiq P rd1s or σpjiq P d1 ` rd1s, this implies that
there is an ascent of σ in the interval rj ` 1, jiq, which is a contradiction. Thus, we
showed that the factor corresponding to j P r2d1s in (4.9) is one for all j P pki, jis and
j P pji´1, kiq with i P rrs. The remaining factors are

(4.3)

ˆ

Lki ´ Mki´1

Mki ´ Mki´1

˙

q´1
o

“

ˆ

Lji ´ Mji´1

Mji ´ Mji´1

˙

q´1
o

for all i P rrs. If ji P Ascpσq, then mji ą mji`1 and therefore Lji “ Ljipσq and
Mji “ Mjipσq. The same conclusion holds for j0 “ 0 and jr “ 2d1. Thus (4.9)
holds. □
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The following proposition writes the factor αpµλ, ν; oq in (4.1) as a product of a
power of qo and a product of Gaussian binomial coefficients that depends only on σλ,ν .

Proposition 4.10. Let λ P Pd and ν P Pd1 be integer partitions with ν ď µλ. Let
σ “ σλ,ν and write tmi | i P r2d1su :“ µλ Y ν with mi ě mi`1 for all i P r2d1s as
in Definition 2.4. Then

αpµλ, ν; oq “

¨

˝

ź

iPrrs

ˆ

Ljipσq ´ Mji´1pσq

Mjipσq ´ Mji´1pσq

˙

q´1
o

˛

‚q

ř

jPr2d1s MjpσqpLjpσq´Mjpσqqpmj´mj`1q

o .

Proof. Recall the formula for αpµλ, ν; oq in (2.3). Lemma 4.9 rewrites the product of
Gaussian binomial coefficients in (2.3) as the product of Gaussian binomial coefficients
in (4.10). That the power of qo in (2.3) equals the power of qo in (4.10) follows from
the fact that mj “ mj`1 if Lj ‰ Ljpσq or Mj ‰ Mjpσq. □

4.3. Partitioning the infinite summation into a finite number of parts. The
formula for ζf2,dpoqpsq in Proposition 4.3 is an infinite sum over the pairs pλ, νq P

Pd ˆ Pd1 that satisfy ν ď µλ. We partition this infinite sum into a finite number
of summations indexed by the elements of the set Wd from Definition 3.11. More
precisely, the infinite number of summands indexed by the elements of Ad :“ tpλ, νq P

Pd ˆ Pd1 | ν ď µλu are partitioned by the finitely many fibres of the following map ω.

Definition 4.11. Define the map

ω : Ad :“ tpλ, νq P Pd ˆ Pd1 | ν ď µλu Ñ Wd : pλ, νq ÞÑ ωpλ, νq “ pI, σq,

where I “ ti P rd ´ 1s | λi ą λi`1u and σ “ σλ,ν as in Definition 4.4.

Example 4.12. Let d “ 3, λ “ p5, 4, 1q, and ν “ p6, 2, 2q. The first component of
ωpλ, νq is I “ t1, 2u, as λ1 “ 5 ą λ2 “ 4 and λ2 “ 4 ą λ3 “ 1. By Example 4.5,
σλ,ν “ 451632. Thus ωpλ, νq “ pt1, 2u, 451632q

Remark 4.13. The map ω is surjective by design of Wd.

Remark 4.14. One motivation for defining the map ω from Definition 4.11 is that
the Gaussian multinomial coefficients in (4.9) only depend on the image ωpλ, νq “

pI, σq. This allows for the Gaussian multinomial coefficients to be pulled out of the
summation over λ and ν, see (4.9).

Next, we show that the elements of the fibre ω´1pI, σq of ω are in bijection with
the elements of the set GI,σ from Section 3.2.

Definition 4.15. For integer partitions λ P Pd and ν P Pd1 , define

ri “ λi ´ λi`1 for all i P rd ´ 1s, rd “ λd,

sj “ νj ´ νj`1 for all j P rd1 ´ 1s, sd1 “ νd1 .

Example 4.16. Let d “ 3, λ “ p5, 4, 1q, and ν “ p6, 2, 2q. Then r1 “ 5 ´ 4 “ 1,
r2 “ 4 ´ 1 “ 3, r3 “ 1, s1 “ 6 ´ 2 “ 4, s2 “ 2 ´ 2 “ 0, and s3 “ 2.

Recall the definition of the corresponding tuples vi in Definition 3.6.

Lemma 4.17. Let λ P Pd and ν P Pd1 be integer partitions with ν ď µλ. Let
σ “ σλ,ν and write tmi | i P r2d1su “ µλ Y ν with mi ě mi`1 for all i P r2d1 ´ 1s as
in Definition 2.4. Then

mi “

d
ÿ

j“1

vσpiq,jrj `

d1
ÿ

j“1

vσpiq,d`jsj .



24 VIOLA SICONOLFI, MARLIES VANTOMME, CHRISTOPHER VOLL

Proof. Suppose that i P r2d1s is such that σpiq P rd1s. Then vσpiq,j “ 0 for j P rds and

mi “ νσpiq “

d1
ÿ

j“σpiq

sj “

d1
ÿ

j“1

vσpiq,d`jsj .

Suppose that i P r2d1s is such that σpiq P d1 ` rd1s and let b´1pσpiqq “ pl,mq where b
is the map from Definition 3.3. Then vσpiq,d`j “ 0 for j P rd1s and

mi “ λl ` λm “

d
ÿ

j“l

rj `

d
ÿ

j“m

rj “

d
ÿ

j“1

vσpiq,jrj . □

Proposition 4.18. Let pI, σq P Wd. The map

ω´1pI, σq Ñ GI,σ : pλ, νq ÞÑ pr, sq,

where r “ priqiPrd1s and s “ psiqiPrd1s are as in Definition 4.15, is a bijection.

Proof. We first show that the map is well-defined. Let λ P Pd and ν P Pd1 be integer
partitions with ν ď µλ and ωpλ, νq “ pI, σq. Since λ and ν are integer partitions,
we have that ri ě 0 and sj ě 0 for i P rds and j P rd1s. The (in)equalities (3.3) and
(3.4) follow from the definition of I in Definition 4.11 as ti P rd´ 1s | λi ą λi`1u. Let
tmi | i P r2d1su “ µλ Yν with mi ě mi`1 for all i P r2d1 ´1s as in Definition 2.4. Then
(3.6) holds by Lemma 4.17. Moreover, from the definition of σ in Definition 4.11, it
follows that mi ą mi`1 when i P Ascpσq, and therefore using Lemma 4.17, (3.5) also
holds. Thus pr, sq is indeed an element of GI,σ and (4.18) is well defined.

Suppose that pr, sq P GI,σ. Let λi “
řd

j“i rj and νi “
řd1

j“i sj . Then λi ě λi`1 and

νj ě νj`1 because ri, sj ě 0 for all i P rd ´ 1s and j P rd1 ´ 1s. Let tmi | i P r2d1su “

µλ Y ν with mi ě mi`1 for all i P r2d1 ´ 1s as in Definition 2.4. Combining (3.5) and
(3.6) with Lemma 4.17, we find that σλ,ν “ σ and therefore ν ď µλ by Remark 4.6.
Lastly, (3.3) and (3.4) imply that λi ą λi`1 for all i P I and λi “ λi`1 for all
i P rd ´ 1szI. Thus pλ, νq is an element of ω´1pI, σq that gets mapped to pr, sq,
proving that (4.18) is surjective. The injectivity is trivial. □

4.4. An explicit finite sum formula for ζf2,dpoqpsq. In Theorem 4.24, we reach

the main result of Section 4. It writes the subalgebra zeta function ζf2,dpoqpsq as a
finite sum indexed by the elements of Wd, whose summands are a product of Gaus-
sian multinomial coefficients and a substitution of a generating series of a set GI,σ

from Section 3.2.

Definition 4.19. Let pI, σq P Wd and tji | i P t0u Y rrsu :“ Ascpσq Y t0, 2d1u with
ji ă ji`1 for all i P t0u Y rrs. The product of Gaussian multinomial coefficients
GMCI,σ associated with pI, σq is

GMCI,σ “

ˆ

d

I

˙

q´1

¨

˝

ź

iPrrs

ˆ

Ljipσq ´ Mji´1pσq

Mjipσq ´ Mji´1pσq

˙

q´1

˛

‚P Zrq´1s.

Example 4.20. Let d “ 3 and pI, σq “ pt1, 2u, 451623q. Then

GMCI,σ “

ˆ

3

t1, 2u

˙

q´1

ˆ

1 ´ 0

0 ´ 0

˙

q´1

ˆ

2 ´ 0

1 ´ 0

˙

q´1

ˆ

3 ´ 1

2 ´ 1

˙

q´1

ˆ

3 ´ 2

3 ´ 2

˙

q´1

.

Let q and t be indeterminates and X “ pXiqiPrds and Y “ pYjqjPrd1s be tuples of
indeterminates.
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Definition 4.21. Let σ P S2d1 . Define xipσq, yjpσq P Qpq, tq to be

xipσq :“ q
ř

kPr2d1s MkpσqpLkpσq´Mkpσqqpvσpkq,i´vσpk`1q,iq ¨ qipd´iq ¨ ti for i P rds,

yjpσq :“ q
ř

kPr2d1s MkpσqpLkpσq´Mkpσqqpvσpkq,d`j´vσpk`1q,d`jq
¨ qjdtj for j P rd1s,(4.4)

where vσp2d1`1q,i “ 0 when i P rd ` d1s. The numerical data map χσ is

χσ : QpX,Yq Ñ Qpq, tq : Xi ÞÑ xipσq, Yj ÞÑ yjpσq.

Example 4.22. Let σ “ 451623 P S6 and i “ 1. Then vσp1q,1 “ vσp2q,1 “ 1 and
vσpkq,1 “ 0 for all k P t3, 4, 5, 6u. Thus

x1pσq “ q0p1´0qp1´1q`0p2´0qp1´0q ¨ q1p3´1q ¨ t1 “ q2t.

Similarly, let j “ 1, then vσp3q,4 “ 1 and vσpkq,4 “ 0 for all k P t1, 2, 4, 5, 6u. Thus

y1pσq “ q0p2´0qp0´1q`1p2´1qp1´0q ¨ q1¨3t1 “ q4t.

Remark 4.23. Notice that, for each i P rds, the first exponent appearing in (4.4) can
be rewritten as

ÿ

kPr2d1s

pMkpσqpLkpσq ´ Mkpσqq ´ Mk´1pσqpLk´1pσq ´ Mk´1pσqqq vσpkq,i.

Given i P rds, vσpkq,i can only be non-zero if σpkq ą d1. In that case, Lk´1pσq ă Lkpσq

and Mk´1pσq “ Mkpσq and therefore MkpσqpLkpσq ´ Mkpσqq ´ Mk´1pσqpLk´1pσq ´

Mk´1pσqq is non-negative. It follows that (4.23) is non-negative as well.

Recall that GI,σpX,Yq is the series enumerating the elements of GI,σ. Let ζf2,dpq, tq

be the bivariate rational expression in Qpq, tq such that ζf2,dpqo, q
´s
o q equals the p-adic

zeta function ζf2,dpoqpsq for all cDVR o. The following is the main result of Section 4.

Theorem 4.24. For all d P Ně2,

(4.5) ζf2,dpq, tq “
ÿ

pI,σqPWd

GMCI,σ χσpGI,σpX,Yqq.

Proof. By Proposition 4.3, we may write

(4.6) ζf2,dpoqpsq “
ÿ

pI,σqPWd

ÿ

λPPd

ÿ

νPPd1 ,νďµλ,
ωpλ,νq“pI,σq

α
´

λ
pnq

1 , λ; o
¯

αpµλ, ν; oqq
´s|λ|
o q

pd´sq|ν|
o .

Corollary 2.7 with n “ d tells us that

(4.7) α
´

λ
pdq

1 , λ; o
¯

“

ˆ

d

I

˙

q´1
o

d
ź

i“1

q
ipd´iqpλi´λi`1q
o .

For integer partitions λ P Pd and ν P Pd1 with ν ď µλ, let

(4.8) Dλ,ν “ q
ř

jPr2d1s MjpσqpLjpσq´Mjpσqqpmj´mj`1qq
řd

i“1 ipd´iqpλi´λi`1qt|λ|pqdtq|ν|,

where σ “ σλ,ν and tmi | i P r2d1su “ µλ Y ν with mi ě mi`1 for all i P r2d1 ´ 1s as
in Definition 2.4. Using (4.7) and Proposition 4.10 in (4.6) results in

(4.9) ζf2,dpq, tq “
ÿ

pI,σqPWd

GMCI,σ

ÿ

λPPd

ÿ

νPPd1 ,νďµλ,
ωpλ,νq“pI,σq

Dλ,ν .

It now suffices to show that for each pI, σq P Wd,

(4.10)
ÿ

λPPd

ÿ

νPPd1 ,νďµλ,
ωpλ,νq“pI,σq

Dλ,ν “ χσpGI,σpX,Yqq.
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By Proposition 4.18, the summands on the left-hand side of (4.10) are in bijection
with the elements of GI,σ and it suffices to show that

(4.11) Dλ,ν “

˜

d
ź

i“1

xipσqri

¸˜

d1
ź

j“1

yjpσqsj

¸

,

where the ri and sj are as in Definition 4.15. The Dλ,ν in (4.8) are written as a
product of four powers of q, which we analyze in turn.

(1) The first power of q has exponent
ř

jPr2d1s MjpσqpLjpσq ´Mjpσqqpmj ´mj`1q.

It follows from Lemma 4.17 that

(4.12) mk ´ mk`1 “

d
ÿ

i“1

pvσpkq,i ´ vσpk`1q,iqri `

d1
ÿ

j“1

pvσpkq,d`j ´ vσpk`1q,d`jqsj ,

for all k P r2d1s, where vσp2d1`1q,i “ 0 for each i P rd`d1s. We may thus rewrite
this first power as

(4.13)

˜

d
ź

i“1

´

q
ř

kPr2d1s MkpσqpLkpσq´Mkpσqqpvσpkq,i´vσpk`1q,iq
¯ri

¸

¨ nonumber

˜

d1
ź

j“1

´

q
ř

kPr2d1s MkpσqpLkpσq´Mkpσqqpvσpkq,d`j´vσpk`1q,d`jq
¯sj

¸

.

(2) The second power q is easily rewritten as follows,

(4.14) q
řd

i“1 ipd´iqpλi´λi`1q “

˜

d
ź

i“1

´

qipd´iq
¯ri

¸˜

d1
ź

j“1

p1q
sj

¸

.

(3) The third and fourth powers of q can be written as

(4.15) q´s|λ|qpd´sq|ν| “

˜

d
ź

i“1

`

ti
˘ri

¸˜

d1
ź

j“1

´

qjdtj
¯sj

¸

.

The product of (4.13) with the right-hand sides of (4.14) and (4.15) indeed results in
(4.11). □

5. Overlap type zeta functions, functional equation and pole at zero

In this section, we present results on the p-adic zeta function ζf2,dpoqpsq. In Sec-

tion 5.1 we introduce the overlap type zeta functions ζwf2,dpoq
psq for each Dyck word

w P D2d1 , which are special summands of ζf2,dpoqpsq. Special attention goes to one
overlap type zeta function called the no-overlap zeta function. Informally and purely
heuristically speaking, it enumerates “most” of the subalgebras of f2,dpoq. Theorem 5.9
establishes a functional equation for the no-overlap zeta function, while Theorem 5.11
proves that it has a simple pole at zero. In Section 5.5 we prove that the p-adic zeta
function ζf2,dpoqpsq has a simple pole at zero as well, confirming a conjecture of Ross-
mann in the relevant cases; see Theorem 5.13.

5.1. Overlap types and overlap zeta functions. We define the overlap type wphq

of a subalgebra h ď f2,dpoq of finite index and define an overlap type zeta function
ζwf2,dpoq

psq for each overlap type w, which enumerates the subalgebras of f2,dpoq with

that overlap type. Afterwards, we slightly adapt Theorem 4.24 to a formula for each
overlap type zeta function ζwf2,dpoq

psq.
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Recall from Section 3.6 that D2d1 denotes the set of Dyck words of length 2d1

and wσ is the Dyck word associated with σ. Recall, moreover, the permutation σλ,ν
associated with pλ, νq from Definition 4.4.

Definition 5.1. Let h be a subalgebra of f2,dpoq of finite index. Let λ be the elementary
divisor type of h{rf2,dpoq, f2,dpoqs in f2,dpoq{rf2,dpoq, f2,dpoqs as in Definition 2.8. Let ν
be the elementary divisor type of h X rf2,dpoq, f2,dpoqs in rf2,dpoq, f2,dpoqs. The overlap
type wphq of h is the Dyck word wσλ,ν

P D2d1 .

We say that h has no overlap if wσλ,ν
is the trivial Dyck word 0d

1

1d
1

. Equivalently,
h has no overlap if and only if µ1 ě ¨ ¨ ¨ ě µd1 ě ν1 ě ¨ ¨ ¨ ě νd1 where pµjqjPrd1s :“ µλ

as in Definition 4.1. This is equivalent to the valuations of the elementary divisors of
rf2,dpoq, f2,dpoqs{ph X rf2,dpoq, f2,dpoqsq all being less than or equal to all the valuations
of elementary divisors of rf2,dpoq, f2,dpoqs{rh, hs. Otherwise, we say that h has overlap.

Definition 5.2. Let w P D2d1 . The overlap type w zeta function is defined as

ζwf2,dpoqpsq :“
ÿ

hďf2,dpoq,wphq“w

|f2,dpoq : h|´s.

In particular, the no-overlap zeta function is defined as

ζn.o.f2,dpoqpsq :“ ζ0
d1
1d

1

f2,dpoqpsq “
ÿ

hďf2,dpoq,wphq“0d11d1

|f2,dpoq : h|´s.

Obviously ζf2,dpoqpsq “
ř

wPD2d1
ζwf2,dpoq

psq. These functions may be compared with the

summands Dw,ρpq, tq in [5, Def. 4.18].

Let ζwf2,dpq, tq be the bivariate rational expression in Qpq, tq such that ζwf2,dpqo, q
´s
o q

equals ζwf2,dpoq
psq for all cDVR o. Theorem 4.24 is straightforwardly adapted to obtain

a formula for the overlap type zeta functions ζwf2,dpoq
psq as follows.

Theorem 5.3. For all d P Ně2 and w P D2d1. Then

(5.1) ζwf2,dpq, tq “
ÿ

pI,σqPWd
wσ“w

GMCI,σ χσpGI,σpX,Yqq.

Proof. In the statement and proof of Proposition 4.3, the summation can be restricted
to the integer partitions λ P Pd and ν P Pd1 with ν ď µλ and wσλ,ν

“ w:

ζwf2,dpoqpsq “
ÿ

λPPd, νPPd1 ,
νďµλ, wσλ,ν

“w

α
´

λ
pnq

1 , λ; o
¯

αpµλ, ν; oqq
´s|λ|
o q

pd´sq|ν|
o .

Similarly, in the statement and proof of Theorem 4.24, the summation can be restric-
ted to pairs pI, σq P Wd with wσ “ w, resulting in (5.1). □

5.2. An alternative formula for the no-overlap zeta function. We simplify
the formula for ζwf2,dpoq

psq in Theorem 5.3 in the case when w “ 0d
1

1d
1

, i.e. for the

no-overlap zeta function ζn.o.f2,dpoq
psq. We start by establishing how the products of

Gaussian binomial coefficients GMCI,σ simplify when wσ “ 0d
1

1d
1

.

Lemma 5.4. Suppose that pI, σq P Wd with wσ “ 0d
1

1d
1

. With

Jσ :“ tj P rd1 ´ 1s | σ´1pjq ă σ´1pj ` 1qu,

we have

(5.2) GMCI,σ “

ˆ

d

I

˙

q´1

ˆ

d1

Jσ

˙

q´1

.
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Proof. If wσ “ 0d
1

1d
1

, then M0pσq “ ¨ ¨ ¨ “ Md1pσq “ 0 and therefore
ˆ

Ljipσq ´ Mji´1pσq

Mjipσq ´ Mji´1pσq

˙

q´1

“ 1

for all ji P Ascpσq X rd1s. Moreover, Ld1`jpσq “ d1 and Md1`jpσq “ j for all j P rd1s.
Let j1 ą ¨ ¨ ¨ ą jr be such that Ascpσq X pd1 ` rd1 ´ 1sq “ d1 ` tji | i P rrsu. Because
σ P S2d1 , it follows that σpd1 `ji´1 `kq “ ji `1´k for all i P rrs and k P rji ´ji´1 ´1s

where j0 “ 0. Therefore Ascpσq X pd1 ` rd1 ´ 1sq “ d1 ` Jσ. Thus

ź

jiPAscpσqXpd1`rd1sq

ˆ

Ljipσq ´ Mji´1pσq

Mjipσq ´ Mji´1pσq

˙

q´1

“
ź

jiPJσ

ˆ

d1 ´ ji´1

ji ´ ji´1

˙

q´1

“

ˆ

d1

Jσ

˙

q´1

□

Next, we establish what the numerical data map χσ simplifies to when wσ “ 0d
1

1d
1

.

Definition 5.5. The no-overlap numerical data map χn.o. is

χn.o. : QpX,Yq Ñ Qpq, tq : Xi ÞÑ qipd´iqti, Yj ÞÑ qdj`jpd1´jqtj .

Example 5.6. If d “ 3, then χn.o.pX1q “ q1p3´1qt1 “ q2t and χn.o.pY1q “ q3¨1`1p3´1qt1 “

q5t.

Remark 5.7. Let σ P S2d1 be such that wσ “ 0d
1

1d
1

. Then the numerical data map χσ

from Definition 4.21 simplifies to χn.o..

The following theorem provides an alternative formula for the no-overlap zeta func-
tion ζn.o.f2,dpoq

psq. It is a lot less complicated than the general formula for the overlap

type w zeta function ζwf2,dpoq
psq in Theorem 5.3 because it has fewer summands and

the summands are simpler. Recall the sets HI,J from Section 3.5.

Theorem 5.8. For all d P Ně2,

(5.3) ζn.o.f2,d
pq, tq “

ÿ

IĎrd´1s,JĎrd1´1s

ˆ

d

I

˙

q´1

ˆ

d1

J

˙

q´1

χn.o.pHI,JpX,Yqq.

Proof. Using (5.2) and Remark 5.7 in (5.1), results in

ζn.o.f2,d
pq, tq “

ÿ

pI,σqPWd,

wσ“0d
1
1d

1

ˆ

d

I

˙

q´1

ˆ

d1

Jσ

˙

q´1

χn.o.pGI,σpX,Yqq.

Now using Proposition 3.40, we find (5.3). □

5.3. A functional equation for the no-overlap zeta function. [17, Thm A]
asserts in particular that ζf2,dpq, tq satisfies the functional equation

ζf2,dpq´1, t´1q “ p´1qDqpD2qtDζf2,dpq, tq,

where D :“ d`d1 “
`

d`1
2

˘

, the Z-rank of f2,d. The following theorem determines that
the no-overlap zeta function ζn.o.f2,d

pq, tq satisfies the same functional equation.

Theorem 5.9. For all d P Ně2, the no-overlap zeta function ζn.o.f2,dpoq
psq satisfies the

functional equation

ζn.o.f2,d
pq´1, t´1q “ p´1qDqpD2qtDζn.o.f2,d

pq, tq,

where D :“ d ` d1 “
`

d`1
2

˘

is the Z-rank of f2,d.
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Proof. This proof follows the proof of [18, Thm. 2.15] which refers to [17, Sec. 2 and 3].
We start from the formula for ζn.o.f2,d

pq, tq stated in Theorem 5.8. Using the identity

(2.1) for the Gaussian multinomial coefficients, we find

ζn.o.f2,d
pq, tq “

ÿ

IĎrd´1s

JĎrd1´1s

˜ ÿ

wPSd,
DespwqĎI

q´ℓpwq
¸˜ ÿ

vPSd1 ,
DespvqĎJ

q´ℓpvq
¸

χn.o.pHI,JpX,Yqq.

Reordering the summations, this becomes

ζn.o.f2,d
pq, tq “

ÿ

wPSd

q´ℓpwq
ÿ

vPSd1

q´ℓpvq
ÿ

DespwqĎIĎrd´1s

DespvqĚJĎrd1´1s

χn.o.pHI,JpX,Yqq.

Inverting q on both sides and using Proposition 3.36, we find that ζn.o.f2,d
pq´1, t´1q equals

p´1qd`d1
ÿ

wPSd

qℓpwq
ÿ

vPSd1

qℓpvq
ÿ

rd´1szDespwqĎIĎrd´1s

rd1´1szDespvqĎJĎrd1´1s

χn.o.pXdYd1HI,JpX,Yqq.

Using the two equations in (2.1), ζn.o.f2,d
pq´1, t´1q becomes

p´1qd`d1
ÿ

wPSd

qd
1´ℓpww0q

ÿ

vPSd1

qpd
1

2 q´ℓpvv0q
ÿ

Despww0qĎIĎrd´1s

Despvv0qĎJĎrd1´1s

χn.o.pXdYd1HI,JpX,Yqq.

Changing the order of summation again results in

ζn.o.f2,d
pq´1, t´1q “p´1qd`d1

qd
1`pd

1

2 q
ÿ

IĎrd´1s

JĎrd1´1s

˜ ÿ

wPSd,
Despww0qĎI

q´ℓpww0q
¸

˜ ÿ

vPSd1 ,
Despvv0qĎJ

q´ℓpvv0q
¸

χn.o.pXdYd1HI,JpX,Yqq.

Using (2.1) and χn.o.pXdYd1q “ qdd
1

td`d1

yields

ζn.o.f2,d
pq´1, t´1q “ p´1qd`d1

qd
1`pd

1

2 q`dd1
ÿ

IĎrd´1s

JĎrd1´1s

ˆ

d

I

˙

q´1

ˆ

d1

J

˙

q´1

χn.o.pHI,JpX,Yqq.

Lastly, using d1 `
`

d1

2

˘

` dd1 “ D and Theorem 5.8 yields (5.9). □

In light of results such as [5, Prop. 4.19], one might expect that the functional
equation established in Theorem 5.9 might hold for all ζwf2,dpq, tq where w P D2d1 , not

just for w “ 0d
1

1d
1

. Our explicit calculations (see Section 7) find that this indeed
holds for d ď 4.

Conjecture 5.10. For all d P Ně2 and w any Dyck word of length 2d1, the overlap
type zeta function ζwf2,dpoq

psq satisfies the functional equation

ζwf2,dpq´1, t´1q “ p´1qDqpD2qtDζwf2,dpq, tq,

where D :“ d ` d1 “
`

d`1
2

˘

is the Z-rank of f2,d.



30 VIOLA SICONOLFI, MARLIES VANTOMME, CHRISTOPHER VOLL

5.4. The simple pole at zero of the no-overlap zeta function. Next, we study
the behaviour of ζn.o.f2,dpoq

psq at s “ 0.

Theorem 5.11. The no-overlap zeta function ζn.o.f2,dpoq
psq has a simple pole at s “ 0

for all but finitely many qo.

Proof. We start from the formula for ζn.o.f2,d
pq, tq stated in Theorem 5.8. Let I Ď rd´1s

and J Ď rd1 ´ 1s. Proposition 3.34 implies that HI,JpX,Yq “ IEn.o.,AI,J ,CI,J
pX,Y, 1q.

Let ΓI,J “ tKu | u P UI,Ju be a family of simplicial monoids, satisfying the conditions
in Proposition 2.29 with E “ En.o., A “ AI,J , and C “ CI,J . Using thatHI,JpX,Yq “

IEn.o.,AI,J ,CI,J
pX,Y, 1q and

Ť

uPUI,J
Ku “ IEn.o.,AI,J ,CI,J

in Theorem 5.8 results in

(5.4) ζn.o.f2,d
pq, tq “

ÿ

IĎrd´1s,JĎrd1´1s

ˆ

d

I

˙

q´1

ˆ

d1

J

˙

q´1

ÿ

uPUI,J

χn.o.pKupX,Y, 1qq.

By Theorem 2.19,

(5.5) KupZq “

ř

βPDKu
Zβ

śr
i“1p1 ´ Zαiq

,

where α1, . . . , αr are quasigenerators of Ku, DKu
is defined in (2.6), and Z “

pX,Y, 1q. Therefore χn.o.pKupZqq|qÑqo,tÑq´s
o

has a pole at s “ 0 if and only if there

is a quasigenerator γ of Ku such that χn.o.pZ
γq “ χn.o.pX

γ1
1 . . . Y

γd`d1

d1 q is a power of t.
Looking at Definition 5.5, this means that the monomial Zγ has to have degree zero
in the variables X1,. . . ,Xd´1, Y1,. . . , Yd1 . Thus the support of γ has to be contained
in td, d`d1 `1u. We show that there is a Ku that has a quasigenerator whose support
is contained in td, d ` d1 ` 1u.

For each i P rd ` d1 ` 1s, let δi P Nd`d1`1
0 be ith unit basis vector. As discussed

in Section 3.4, δd`2δd`d1`1 is a completely fundamental element of En.o. and therefore
by Proposition 2.29, it is a quasigenerator for some of the Ku. There cannot be more
than one quasigenerator of CEn.o. with the same support and thus the multiplicity of
the pole at s “ 0 of χn.o.pKupZqq|qÑqo,tÑq´s

o
is at most one. The order of a pole of a

sum is at most the maximal order of the poles of the summands. Therefore by (5.4),
ζn.o.f2,dpoq

psq can have at most a simple pole at s “ 0 (the Gaussian binomial coefficients

do not depend on s and therefore they have no poles or zeros).
It remains to show that the residues of the summands in (5.4) do not cancel each

other out except for possibly finitely many qo. To that end, it suffices to show that

(5.6)
ÿ

IĎrd´1s,JĎrd1´1s

ˆ

d

I

˙

q´1

ˆ

d1

J

˙

q´1

lim
sÑ0

s
ÿ

uPUI,J

χn.o.pKupZqq
ˇ

ˇ

tÑq´s

is a non-zero rational expression in q multiplied by log q. The Gaussian multinomial
coefficients are polynomials in q´1 with non-negative coefficients. By the reason-
ing earlier in this proof, χn.o.pKupZqq

ˇ

ˇ

qÑqo,tÑq´s
o

can have at most a simple pole at

s “ 0. If it has no pole, then limsÑ0 s
ř

uPUI,J
χn.o.pKupZqq

ˇ

ˇ

tÑq´s is zero. Otherwise,

(5.5) shows that the numerator of χn.o.pKupZqq is a polynomial in q and t with non-
negative coefficients. It also shows that the denominator of χn.o.pKupZqq is a product
of dimKu polynomials of the form p1 ´ qatbq with a, b P Z. Because we assume that
χn.o.pKupZqq

ˇ

ˇ

qÑqo,tÑq´s
o

has a simple pole at s “ 0, exactly one of these factors has

a “ 0. Therefore multiplying the denominator by s´1 and taking the limit s Ñ 0
results in log q multiplied by a product of polynomials of the form p1 ´ qaq. Thus in
this case, limsÑ0 s

ř

uPUI,J
χn.o.pKupZqq

ˇ

ˇ

tÑq´s is a non-zero rational expression in q
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multiplied by log q. Thus we find that (5.6) is indeed a rational expression in q multi-
plied by log q. To show that it is non-zero, notice that when evaluated at q “ 1

2 , both
the Gaussian multinomial coefficients, the numerators and the factors p1 ´ qaq in de
denominators of the limsÑ0 s

ř

uPUI,J
χn.o.pKupZqq

ˇ

ˇ

tÑq´s are non-negative numbers,

while log 1{2 is a negative number. Therefore the summands in (5.6) all have the
same sign when evaluated in q “ 1{2 and cannot completely cancel out. □

5.5. The simple pole at zero of the overlap and subalgebra zeta functions.
We study the behaviour of ζf2,dpoqpsq at s “ 0 by first looking at the behaviour of

ζf2,dpoqpsq ´ ζn.o.f2,dpoq
psq at s “ 0.

Theorem 5.12. The rational function ζf2,dpoqpsq ´ ζn.o.f2,dpoq
psq does not have a pole at

s “ 0.

Proof. Since ζf2,dpoqpsq ´ ζn.o.f2,dpoq
psq “

ř

wPD2d1 ,w‰0d11d1 ζwf2,dpoq
psq it follows from The-

orem 5.3 that

ζf2,dpq, tq ´ ζn.o.f2,d
pq, tq “

ÿ

pI,σqPWd,wσ‰0d
1
1d

1

GMCI,σ χσpGI,σpX,Yqq.

Therefore it suffices to show that for each pair pI, σq P Wd with wσ ‰ 0d
1

1d
1

, the
rational function χσpGI,σpX,Yqq|qÑqo,tÑq´s

o
has no pole at s “ 0. Recall from Pro-

position 3.22 that GI,σ can be seen as the projection of IEσ ,AI,σ ,CI,σ
on the first d`d1

coordinates, thus GI,σpX,Yq “ IEσ ,AI,σ ,CI,σ
pX,Y,1q. Let ΓI,σ “ tKu | u P UI,σu be

as in Definition 3.23. Using that
Ť

uPUI,σ
Ku “ IEσ ,AI,σ ,CI,σ

, we find

χσpGI,σpX,Yqq “
ÿ

uPUI,σ

χσpKupX,Y,1qq.

By Theorem 2.19, the denominator of χσpKupX,Y,1qq when written in least terms
is

śr
i“1p1 ´ Zαiq where α1, . . . , αr are quasigenerators of Ku and Z “ pX,Y,1q.

Thus χσpKupZqq|qÑqo,tÑq´s
o

has a pole at s “ 0 if and only if there is a quasigen-

erator β of Ku such that χσpXβ1
1 . . . Y

βd`d1

d1 q is a power of q´s. By the definition
of χσ in Definition 4.21, this happens only when the support of β is contained in
tdu Y td ` d1 ` i | i P rrσsu.

Recall that Eσ is the monoid associated with the matrix Φσ P MatrσˆmσpZq

from Definition 3.8. As wσ ‰ 0d
1

1d
1

, there is an h P r2d1 ´ 1s such that the h-th letter
of wσ is 1 and the ph ` 1q-th letter of w is 0. Let i, j, k be such that σphq “ k P rd1s

and b´1pσph ` 1qq “ pi, jq P rds2. Then Φσ has a row

(5.7) r0pi´1q, p´1qpj´iq, p´2qpd´j`1q, 0pk´1q, 1pd1´k`1q, 0, . . . , 0,´1, 0, . . . , 0s.

Note that (5.7) has the entry ´1 in column d, another ´1 in one other column
contained in td ` d1 ` i | i P rrσsu, and zero in the other columns contained in
td`d1`i | i P rrσsu. Therefore multiplying the row (5.7) with β could not result in zero
when the support of β is contained in tduYtd`d1 ` i | i P rrσsu. Consequently, such a
tuple β could not satisfy Φσβ “ 0, and therefore not be an element of Ku Ď Eσ. Thus
we find that χσpKupX,Y,1qq|qÑqo,tÑq´s

o
and by (5.5) also χσpGI,σpX,Yqq|qÑqo,tÑq´s

o

cannot have a pole at s “ 0. □

Theorem 5.13. The rational function ζf2,dpoqpsq has a simple pole at s “ 0 for all
but finitely many qo.

Proof. Follows directly from Theorem 5.12 and Theorem 5.11. □
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This result confirms the first part of [10, Conjecture IV (P-adic form)] for the
relevant zeta functions (for all but possibly a finite number of qo). (The second
part is known to hold for d P t2, 3, 4u, by inspection of the explicit formulas; see
Corollary 7.9.)

6. Reduced and topological zeta functions

We discuss the reduced and topological zeta functions ζredf2,d
ptq and ζtopf2,d

psq. Theor-

ems 6.7 and 6.9 provide formulas for ζredf2,d
ptq and ζtopf2,d

psq respectively. Theorem 6.8

establishes that the reduced zeta function ζredf2,d
ptq has a simple pole of order

`

d`1
2

˘

at

t “ 1. Theorems 6.10, 6.13, and 6.14 confirm parts of conjectures from [10] pertain-
ing to the degree and pole at s “ 0 of topological subalgebra zeta functions, in the
relevant special cases.

6.1. Preliminary definitions. In preparation, we make a few preliminary defin-
itions. First, we define the counterpart of GMCI,σ that we will use to formulate

formulas for ζredf2,d
ptq and ζtopf2,d

psq.

Definition 6.1. For pI, σq P Wd, the product of multinomial coefficients associated
with pI, σq is MCI,σ :“ GMCI,σ |qÑ1.

Second, we define integers aσpαq and bσpαq for all σ P S2d1 and α P Nmσ
0 that are

closely related to the numerical data map χσ.

Definition 6.2. Let σ P S2d1 and α P Nmσ
0 . Define aσpαq and bσpαq to be the respect-

ively non-negative and positive integers such that χσppX,Y,1qαq “ p1´ qaσpαqtbσpαqq.

Example 6.3. Let σ “ 21, α1 :“ p0, 1, 2, 0q, and α2 :“ p0, 1, 0, 2q. Then

χσppX,Y,1qα1q “ χσpX0
1X

1
2Y

2
1 1

0q “ pq1tq0pt2q1pq2tq210 “ q4t4,

χσppX,Y,1qα2q “ χσpX0
1X

1
2Y

0
1 1

2q “ pq1tq0pt2q1pq2tq012 “ t2.

Thus aσpα1q “ 4, bσpα1q “ 4, aσpα2q “ 0, and bσpα2q “ 2.

Recall the definition of ΓI,σ “ tKu | u P UI,σu in Definition 3.23. Third, we define
a subset UI,σ,max of UI,σ and a positive rational number cd for each d P Ně2.

Definition 6.4. For each pI, σq P Wd, let UI,σ,max be the set of u P UI,σ such that

dimKu “ d ` d1 “
`

d`1
2

˘

. Let cd be the positive rational number

(6.1) cd :“
ÿ

pI,σqPWd

MCI,σ

ÿ

uPUI,σ,max

|DKu
|

ś

αPCFEpKuq bσpαq
,

where DKu
is defined in (2.6).

Remark 6.5. Although it is not a priori clear, cd does not depend on the family
ΓI,σ “ tKu | u P UI,σu of simplicial monoids, but only on d. This is a consequence
of Theorem 6.8.

We cannot offer a conceptual interpretation of cd. Its values for d ď 6 are tabulated
in Table 6.1.

d 2 3 4 5 6

cd
3
4

25
54

569
2304

3800243
32400000

8743819
172800000

Table 6.1. Values of cd for each d P t2, 3, 4, 5, 6u.
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6.2. Reduced zeta functions. The reduced zeta function ζredf2,d
ptq can be obtained

by substituting q Ñ 1 in ζf2,dpq, tq. We straightforwardly adapt Theorem 4.24 to a

formula for ζredf2,d
ptq and then use it to determine the order and residue of the pole at

t “ 1 of ζredf2,d
ptq. We first define a reduced counterpart of the numerical data map.

Definition 6.6. The reduced numerical data map χred is

χred : QpX,Yq Ñ Qptq : Xi ÞÑ ti, Yj ÞÑ tj .

The following theorem is a straightforward adaption of Theorem 4.24.

Theorem 6.7. For all d P Ně2,

ζredf2,d
ptq “

ÿ

pI,σqPWd

MCI,σ χredpGI,σpX,Yqq.

Proof. Follows from Theorem 4.24 after substituting q Ñ 1 on both sides of (4.5). □

Next, we will use this formula to deduce the order and residue of the pole at t “ 1
of ζredf2,d

ptq. Recall that D “ d ` d1 “
`

d`1
2

˘

is the Z-rank of f2,d.

Theorem 6.8. The reduced zeta function ζredf2,d
ptq has a pole at t “ 1 of order D with

residue
lim
tÑ1

´

pt ´ 1qDζredf2,d
ptq

¯

“ p´1qDcd,

where cd is defined in Definition 6.4.

Proof. Recall from Proposition 3.22 that GI,σ can be seen as the projection of the
subset IEσ ,AI,σ ,CI,σ

P Nmσ
0 on the first d`d1 coordinates, or equivalently GI,σpX,Yq “

IEσ ,AI,σ ,CI,σ
pX,Y,1q. Let ΓI,σ “ tKu | u P UI,σu be as in Definition 3.23. Using that

Ť

uPUI,σ
Ku “ IEσ ,AI,σ ,CI,σ

in Theorem 6.7 results in

(6.2) ζredf2,d
ptq “

ÿ

pI,σqPWd

MCI,σ

ÿ

uPUI,σ

χredpKupX,Y,1qq.

By Theorem 2.19,

KupZq “

ř

βPDKu
Zβ

ś

αPCFEpKuqp1 ´ Zαq
,

where DKu
is defined in (2.6) and Z “ pX,Y,1q. Applying χred on both sides results

in

χred

`

KupZq
˘

“

ř

βPDKu
χredpZβq

ś

αPCFEpKuqp1 ´ tbσpαqq
,

where bσpαq was defined in Definition 6.2. It follows that χredpKupX,Y,1qq has a
pole at t “ 1 of order dimKu and the residue of this pole is

(6.3) lim
tÑ1

´

pt ´ 1qdimKuKupZq

¯

“ p´1qdimKu
|DKu

|
ś

αPCFEpKuq bσpαq
.

Recall from Remark 3.16 that the dimension of GI,σ, and therefore also of IEσ ,AI,σ ,CI,σ

and Ku, is at most D. Thus the summand indexed by u P UI,σ in (6.2) has a pole at
t “ 1 of order D if dimKu “ D and otherwise the pole has a lower order. Therefore
ζredf2,d

ptq has a pole at t “ 1 of order at most D. To prove that the order is exactly D, it

suffices to show that the sum of the residues of the summands in (6.2) with maximal
pole order does not vanish. In other words, we need to show that summing (6.3) over
all u P UI,σ with dimKu “ D does not cancel out. This is of course trivial, because

(6.3) has the same sign for all these u. To find the residue of ζredf2,d
ptq, we may just sum

(6.3) over all these u, resulting in p´1qDcd, where cd was defined in Definition 6.4. □
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6.3. Topological zeta functions. Next, we study the topological zeta function
ζtopf2,d

psq. We write down a formula in Theorem 6.9 and determine its degree in The-

orem 6.10. In Theorem 6.11, we link its behaviour at infinity to the behaviour at
t “ 1 of ζredf2,d

ptq. In Section 6.4 we determine the behaviour of ζtopf2,d
psq at s “ 0.

In Section 1.2, we informally introduced the topological zeta function ζtopf2,d
psq as

the rational function in s obtained as the first non-zero coefficient of the p-adic zeta
function ζf2,dpq, q´sq, expanded in q ´ 1. More precisely,

ζtopf2,d
psq :“ lim

qÑ1
pq ´ 1qrank f2,dζf2,dpq, q´sq.

For example, for a P N0 and b P N,

(6.4) lim
qÑ1

pq ´ 1q
1

1 ´ qa´bs
“

1

bs ´ a
.

The following theorem is an adaption of Theorem 4.24 to a formula for ζtopf2,d
psq.

Theorem 6.9. For d P Ně2,

ζtopf2,d
psq “

ÿ

pI,σqPWd

MCI,σ

ÿ

uPUI,σ,max

|DKu
|

ś

αPCFEpKuqpbσpαqs ´ aσpαqq
.

Proof. Recall from Proposition 3.22 that GI,σ can be seen as the projection of the
subset IEσ ,AI,σ ,CI,σ

Ď Nmσ
0 on the first d`d1 coordinates, or equivalently GI,σpX,Yq “

IEσ ,AI,σ ,CI,σ
pX,Y,1q. Let ΓI,σ “ tKu | u P UI,σu be as in Definition 3.23. Using that

Ť

uPUI,σ
Ku “ IEσ ,AI,σ ,CI,σ

in Theorem 4.24 results in

ζf2,dpq, tq “
ÿ

pI,σqPWd

GMCI,σ

ÿ

uPUI,σ

χσpKupX,Y,1qq.

By Theorem 2.19,

(6.5) χσpKupZqq “

ř

βPDKu
χσpZβq

ś

αPCFEpKuqp1 ´ χσpZαqq
,

where Z “ pX,Y,1q. Note that lim
qÑ1

pq´1qd`d1

χσpKupZqq vanishes if dimKu ă d`d1,

that is, u P UI,σzUI,σ,max. The numerator of (6.5) becomes |DKu
| after substituting

q Ñ 1. For each u P UI,σ,max, the denominator of (6.5) becomes
ś

αPCFEpKuqpbσpαqs´

aσpαqq after multiplication with pq ´ 1q´d´d1

and taking the limit q Ñ 1, cf. (6.4)
and Definition 6.2. □

The degree of a rational expression is the degree of the numerator minus the degree
of the denominator. The following confirms [10, Conj. I] for the considered algebras.

Theorem 6.10. The topological zeta function ζtopf2,d
psq has degree ´D in s:

degs

´

ζtopf2,d
psq

¯

“ ´D,

where D “ d ` d1 “
`

d`1
2

˘

is the Z-rank of f2,d.

Proof. All summands in (6.9) have degree ´D in s. For each u P UI,σ,max, the
numerator of the summand corresponding to u is MCI,σ |DKu |, which is always pos-
itive. Similarly, the highest degree coefficient of the denominator of the summand
corresponding to u is

ś

αPCFEpKuq bσpαq, which is also always positive. Therefore

cancellation of the highest degree terms in (6.9) is not possible. □

Next, we study the behaviour of the topological zeta function at infinity.
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Theorem 6.11. The topological zeta function ζtopf2,d
psq satisfies

lim
sÑ0

s´Dζtopf2,d
ps´1q “ cd,

where D “ d ` d1 “
`

d`1
2

˘

is the Z-rank of f2,d, and cd is defined in Definition 6.4.

Proof. Substituting s´1 for s in the summand corresponding to u P UI,σ,max in (6.9),

multiplying by s´D and taking the limit s Ñ 0 results in

lim
sÑ0

s´D
|DKu

|
ś

αPCFEpKuqpbσpαqs´1 ´ aσpαqq
“ lim

sÑ0

|DKu
|

ś

αPCFEpKuqpbσpαq ´ aσpαqsq

“
|DKu

|
ś

αPCFEpKuq bσpαq
.

Therefore, using (6.9), we find

lim
sÑ0

s´Dζtopf2,d
ps´1q “

ÿ

pI,σqPWd

MCI,σ

ÿ

uPUI,σ,max

|DKu
|

ś

αPCFEpKuq bσpαq
,

which is the definition of cd in (6.1). □

The following corollary shows that the behaviour at infinity of ζtopf2,d
psq is closely

related to the behaviour at t “ 1 of ζredf2,d
ptq.

Corollary 6.12. For d P Ně2,

lim
sÑ0

s´Dζtopf2,d
ps´1q “ lim

tÑ1
p1 ´ tqDζredf2,d

ptq,

where D “ d ` d1 “
`

d`1
2

˘

is the Z-rank of f2,d.

Proof. Combine Theorem 6.11 with Theorem 6.8. □

Corollary 6.12 may be compared with [9, Conjecture 6.7], which describes an ana-
logous phenomenon for topological and reduced zeta functions associated with graded
ideal zeta functions of free nilpotent Lie rings of arbitrary rank and nilpotency class.

6.4. Behaviour at zero of the topological zeta function. In Theorem 6.13, we
show that the topological zeta function ζtopf2,d

psq has a simple pole at s “ 0, just as

the p-adic zeta function ζf2,dpoqpsq for all but possibly a finite number of qo (see The-

orem 5.13). The residue of this pole is determined in Theorem 6.14. These two
theorems together confirm [10, Conj. IV (Topological form)] for the considered sub-
algebra zeta functions.

Theorem 6.13. The topological zeta function ζtopf2,d
psq has a simple pole at s “ 0.

Proof. We start from the formula for ζtopf2,d
psq in Theorem 6.9. Let pI, σq P Wd and

u P UI,σ,max. The summand corresponding to u in (6.9) has numerator MCI,σ|DKu
|

and denominator
ś

αPCFEpKuqpbσpαqs ´ aσpαqq. This numerator is a positive rational

number and the denominator is zero at s “ 0 if and only if there is a α P CFEpKuq

such that aσpαq is zero. Recall from Definition 6.2 that aσpαq is the non-negative

integer such that χσppX,Y,1qαq “ p1 ´ qaσpαqtbσpαqq. Looking at Definition 4.21,
aσpαq is zero if and only if the support of α is contained in tdu Y td`d1 ` i | i P rrσsu.
Thus the summand corresponding to u in (6.9) has a pole at s “ 0 if and only if there
is a completely fundamental element of Ku with support contained in tduYtd`d1 `i |

i P rrσsu. From the proof of Theorem 5.12, we know that this cannot happen if wσ

is not the trivial Dyck word. From the proof of Theorem 5.11, we know that if wσ
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is the trivial Dyck word, then there are Ku that have such a completely fundamental
element, and, moreover, no Ku can have more than one such completely fundamental
element. Thus the summand corresponding to u in (6.9) has at most a simple pole at

s “ 0, and therefore ζtopf2,d
psq has at most a simple pole.

Let
U0,max :“ tu P UI,σ,max | pI, σq P Wd, δd ` 2δd`d1`1 P Kuu.

The summand corresponding to u in (6.9) has a simple pole at s “ 0 if and only if
u P U0,max. By the reasoning earlier in this proof, if u P U0,max then u P UI,σ,max with

wσ “ 0d
1

1d
1

. Also I “ rd ´ 1s and Jσ “ rd1 ´ 1s, because otherwise UI,σ,max is empty.
It follows using Lemma 5.4 that if u P U0,max X UI,σ, then

MCI,σ “

ˆ

d

rd ´ 1s

˙ˆ

d1

rd1 ´ 1s

˙

“ d!d1!.

The residue of ζtopf2,d
psq at s “ 0 is therefore

(6.6)

lim
sÑ0

sζtopf2,d
psq “ d!d1!

ÿ

uPU0,max

|DKu
|

bσpδd ` 2δd`d1`1q
ś

αPCFEpKuqztδd`2δd`d1`1up´aσpαqq
.

These summands all have the same sign p´1qd`d1´1, therefore there is no cancellation

and ζtopf2,d
psq indeed has a simple pole at s “ 0. □

Next, we simplify the complicated expression for the residue in (6.6).

Theorem 6.14. The residue of the simple pole at s “ 0 of the topological zeta function
ζtopf2,d

psq is

lim
sÑ0

sζtopf2,d
psq “

p´1qD´1

pD ´ 1q!
,

where D “ d ` d1 “
`

d`1
2

˘

is the Z-rank of f2,d.

Proof. By the proof of Theorem 6.13, we know that the summands of (6.9) indexed

by pI, σq P Wd with wσ ‰ 0d
1

1d
1

do not contribute to the residue. Therefore the
residue can be written as

lim
sÑ0

sζtopf2,d
psq “ lim

sÑ0
s

ÿ

pI,σqPWd

wσ“0d
1
1d

1

MCI,σ

ÿ

uPUI,σ,max

|DKu
|

ś

αPCFEpKuqpbσpαqs ´ aσpαqq
.

The proof of Theorem 6.13 also showed that the nonzero summands all have MCI,σ “

d!d1!, which is independent of pI, σq, thus

lim
sÑ0

sζtopf2,d
psq “ d!d1! lim

sÑ0
s

ÿ

pI,σqPWd

wσ“0d
1
1d

1

ÿ

uPUI,σ,max

|DKu
|

ś

αPCFEpKuqpbσpαqs ´ aσpαqq
.

Recall that

|DKu
|

ś

αPCFEpKuqpbσpαqs ´ aσpαqq
“ lim

qÑ1
pq ´ 1qd`d1

χσpKupX,Y, 1qq|tÑq´s

and
Ť

uPUI,σ
Ku “ IEσ ,AI,σ ,CI,σ

where the union is disjoint. This allows us to write

the residue as

lim
sÑ0

sζtopf2,d
psq “ d!d1! lim

sÑ0
s lim
qÑ1

pq ´ 1qd`d1
ÿ

pI,σqPWd

wσ“0d
1
1d

1

χn.o.pIEn.o.,AI,Jσ ,CI,Jσ
pX,Y, 1qq|tÑq´s .



SUBGROUP GROWTH IN FREE CLASS-2-NILPOTENT GROUPS 37

α P CFEpE0q χn.o.ppX,Y, 1qαq an.o.pαq bn.o.pαq

δi with i P rd ´ 2s p1 ´ qipd´iqtiq ipd ´ iq i
δd´1 ` δd`d1`1 p1 ´ qd´1td´1q d ´ 1 d ´ 1

δd ` 2δd`k with k P rd1s p1 ´ q2kpd`d1´kqtd`2kq 2kpd ` d1 ´ kq d ` 2k
δd ` 2δd`d1`1 p1 ´ tdq 0 d

Table 6.2. The completely fundamental elements of E0 and the cor-
responding an.o.pαq and bn.o.pαq.

Recall from Remark 3.35 that
Ť

pI,σqPWd,wσ“0d11d1 IEn.o.,AI,Jσ ,CI,Jσ
“ En.o. and this

union is disjoint. Therefore the residue can be written as

lim
sÑ0

sζtopf2,d
psq “ d!d1! lim

sÑ0
s lim
qÑ1

pq ´ 1qd`d1

χn.o.pEn.o.pX,Y, 1qq|tÑq´s .

Now recall the subset E0 of En.o. from Definition 3.26 and consider the triangulation
Γ “ tKu | u P Un.o.u of En.o. in Proposition 3.28. Let U0 :“ tu P Un.o. | Ku Ď E0u and
U c
0 :“ tu P Un.o. | Ku Ę E0u. Then E0 “

Ť

uPU0
Ku and this union is disjoint. Thus

the residue becomes

lim
sÑ0

sζtopf2,d
psq “ d!d1! lim

sÑ0
s lim
qÑ1

pq´1qd`d1

χn.o.

¨

˝E0pX,Y, 1q `
ÿ

uPUc
0

KupX,Y, 1q

˛

‚|tÑq´s .

The triangulation Γ “ tKu | u P Un.o.u was constructed so that the Ku for u P

U c
0 do not contain δd ` 2δd`d1`1. Therefore by the same reasoning as in the proof

of Theorem 6.13, the summands χn.o.pKupX,Y, 1qq do not contribute to the residue.
For every α P CFEpE0q, let an.o.pαq and bn.o.pαq be the respectively non-negative

and positive integers such that χn.o.ppX,Y, 1qαiq “ p1 ´ qan.o.pαqtbn.o.pαqq. As E0 is
simplicial (see Remark 3.27) we may use Theorem 2.19 to deduce

lim
qÑ1

pq ´ 1qd`d1

χn.o.pE0pX,Y, 1q|tÑq´s “
|DE0 |

ś

αPCFEpE0qpbn.o.pαqs ´ an.o.pαqq
.

Thus the residue becomes

lim
sÑ0

sζtopf2,d
psq “ d!d1! lim

sÑ0
s

|DE0 |
ś

αPCFEpE0qpbn.o.pαqs ´ an.o.pαqq

“ p´1qD´1d!d1!
|DE0 |

bn.o.pδd ` 2δd`d1`1q
ś

αPCFEpE0qztδd`2δd`d1`1u an.o.pαq
.(6.7)

The completely fundamental elements α of E0 and the corresponding data an.o.pαq

and bn.o.pαq are listed in Table 6.2. Using this data, the denominator in (6.7) becomes

d

¨

˝

ź

iPrd´2s

ipd ´ iq

˛

‚pd ´ 1q

¨

˝

ź

kPrd1s

2kpd ` d1 ´ kq

˛

‚,

which simplifies to 2d
1

pdq!pd1q!pd ` d1 ´ 1q!.
Lastly, we determine |DE0 |. To do this, we need to count the number of elements

x P E0 that can be written as a Q-linear combination of the completely fundamental
elements of E0 with coefficients in r0, 1q. Since δi is the only completely fundamental
element of E0 with support containing tiu for i P rd´2s, we deduce that the coefficient
of δi needs to be zero for i P rd ´ 2s. Similarly, δd´1 ` δd`d1`1 is the only completely
fundamental element with support containing td ´ 1u, thus the coefficient of δd´1 `

δd`d1`1 is zero as well. Also, δd ` 2δi`1 is the only completely fundamental element
with support containing ti ` 1u for i P d ´ 1 ` rd1s, thus its coefficient lies in t0, 1{2u.
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Since the coefficient of δd´1 ` δd`d1`1 is zero, δd ` 2δd`d1`1 is the only remaining
completely fundamental element with support containing td ` d1 ` 1u. Therefore its
coefficient lies in t0, 1{2u as well. Thus we find that

DE0 “ E0 X

$

&

%

ÿ

iPd´1`rd1`1s

aipδd ` 2δi`1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ai P t0, 1{2u

,

.

-

.

Obviously
ř

iPd´1`rd1`1s aipδd`2δi`1q lies in Nd`d1`1
0 if and only if

ř

iPd´1`rd1`1s ai P N,
in other words when an even number of ai are non-zero. Moreover, in that case, it
also lies in E0, thus we find that |DE0 | “ 2d

1

.
We conclude by inputting this data in (6.7):

lim
sÑ0

sζtopf2,d
psq “ p´1qDd!d1!

2d
1

2d1
pdq!pd1q!pd ` d1 ´ 1q!

“
p´1qD

pD ´ 1q!
. □

7. Explicit computations

We record (aspects of) explicit computations of the p-adic, reduced, and topological
zeta functions. The full results are available at 10.5281/zenodo.7966735. We start by
collecting the well-known formulas for d “ 2, 3.

Proposition 7.1 (d “ 2).

ζf2,2pq, tq “
1 ´ q3t3

p1 ´ q3t2qp1 ´ q2t2qp1 ´ tqp1 ´ qtq
,

ζtopf2,2
psq “

3

2p2s ´ 3qps ´ 1qs
,

ζredf2,2ptq “
t2 ` t ` 1

p1 ´ t2q2p1 ´ tq
.

Proof. The p-adic formula was given in [8, Prop. 8.1], the others follow immediately.
□

Proposition 7.2 (d “ 3).

ζf2,3pq, tq “
p1 ´ q8t4qW2,3pq, tq

p1 ´ tqp1 ´ qtqp1 ´ q2tqp1 ´ q4t2qp1 ´ q5t2qp1 ´ q6t2qp1 ´ q6t3qp1 ´ q7t3q
,

where W2,3pX,Y q is

1 ` X3Y 2 ` X4Y 2 ` X5Y 2 ´ X4Y 3 ´ X5Y 3 ´ X6Y 3 ´ X7Y 4 ´ X9Y 4

´ X10Y 5 ´ X11Y 5 ´ X12Y 5 ` X11Y 6 ` X12Y 6 ` X13Y 6 ` X16Y 8.

Furthermore

ζtopf2,3
psq “

25s2 ´ 94s ` 84

3p3s ´ 7qp3s ´ 8qp2s ´ 5qps ´ 1qps ´ 2q2ps ´ 3qs
,

ζredf2,3ptq “
t8 ` 2t7 ` 7t6 ` 9t5 ` 12t4 ` 9t3 ` 7t2 ` 2t ` 1

p1 ´ t3q3p1 ´ t2q2p1 ´ tq
.

Proof. The p-adic formula was given in [15, Thm 24], the others follow immediately.
□

In [2], an algorithm is presented to write the generating function enumerating
integral points of a convex pointed polyhedral cone in a closed form. This algorithm is
implemented in the software package LattE [1], which can be accessed in SageMath [12]
through the package Zeta [11]. By this route, we were able to implement Theorem 4.24
and recover the explicit expressions for ζf2,dpq, tq for n “ 2, 3 in Propositions 7.1 and

https://doi.org/10.5281/zenodo.7966735
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7.2. Moreover, we were also able to obtain an explicit expression for ζf2,4pq, tq, which
was not known before.

Theorem 7.3 (d “ 4, p-adic). There is an explicitly determined polynomial Ψ2,4pX,
Y q P ZrX,Y s of degrees 335 in X and 88 in Y such that

(7.1) ζf2,4poqpq, tq “
Φ2,4pq, tq

Ψ2,4pq, tq
,

where Ψ2,4pq, tq is

p1 ´ q27t7qp1 ´ q25t7qp1 ´ q25t6qp1 ´ q28t7qp1 ´ q22t5q2p1 ´ q21t5qp1 ´ q17t4q

p1 ´ q15t4qp1 ´ q13t4qp1 ´ q26t6qp1 ´ q13t3qp1 ´ q11t3qp1 ´ q18t4qp1 ´ q9t2q

p1 ´ q12t3qp1 ´ q24t6qp1 ´ q16t4qp1 ´ q14t4qp1 ´ q9t3qp1 ´ q12t4qp1 ´ qtqp1 ´ tq.

Corollary 7.4 (d “ 4, reduced).

ζredf2,4ptq “
Φred
2,4 ptq

p1 ´ tq2p1 ´ t3q4p1 ´ t4q4
,

where Φred
2,4 ptq is

t20 ` 2t19 ` 15t18 ` 30t17 ` 87t16 ` 156t15 ` 284t14 ` 414t13 ` 562t12 ` 658t11

` 703t10 ` 658t9 ` 562t8 ` 414t7 ` 284t6 ` 156t5 ` 87t4 ` 30t3 ` 15t2 ` 2t ` 1.

Proof. Substitute q “ 1 in (7.1). Alternatively, explicate [7, Prop. 4.1]. □

Theorem 7.5 (d “ 4, topological).

pΦtop
2,4 psq{p168 ζtopf2,4

psqqq “p7s ´ 25qp7s ´ 27qp6s ´ 25qp5s ´ 21qp5s ´ 22q2

p4s ´ 13qp4s ´ 15qp4s ´ 17qp3s ´ 11qp3s ´ 13q2

p2s ´ 7qp2s ´ 9q2ps ´ 1qps ´ 3q2ps ´ 4q4s,

where Φtop
2,4 psq is

21078036000s13 ´ 1040066363064s12 ` 23656166485364s11

´ 328379597912246s10 ` 3103756047141233s9 ´ 21092307321737791s8

` 106022910302150804s7 ´ 399106101276334990s6 ` 1125038325014124489s5

´ 2345400850582061927s4 ` 3514612915281294714s3

´ 3584726815997417886s2 ` 2230351512292203300s ´ 639268261271640000.

The computation of the p-adic zeta function for d “ 5 is currently out of our reach.
We are, however, able to compute the reduced zeta function ζredf2,5

psq (using Evseev’s

method, [7, Prop. 4.1]) and the topological zeta function ζtopf2,5
psq (using our method).

Theorem 7.6 (d “ 5, reduced; [7]).

ζredf2,5ptq “
Φred
2,5 ptq

pp1 ´ t5q5p1 ´ t3q5p1 ´ t4q4p1 ´ tqq
,
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where Φred
2,5 ptq is

t42 ` 4t41 ` 30t40 ` 115t39 ` 431t38 ` 1330t37 ` 3709t36 ` 9185t35 ` 20876t34

` 43410t33 ` 83737t32 ` 150127t31 ` 252056t30 ` 397040t29 ` 589457t28

` 826057t27 ` 1095916t26 ` 1377780t25 ` 1644507t24 ` 1864452t23 ` 2010117t22

` 2060784t21 ` 2010117t20 ` 1864452t19 ` 1644507t18 ` 1377780t17 ` 1095916t16

` 826057t15 ` 589457t14 ` 397040t13 ` 252056t12 ` 150127t11 ` 83737t10

` 43410t9 ` 20876t8 ` 9185t7 ` 3709t6 ` 1330t5 ` 431t4 ` 115t3 ` 30t2 ` 4t ` 1.

Theorem 7.7 (d “ 5, topological).

ζtopf2,5
psq “

Φtop
2,5 psq

Ψtop
2,5 psq

,

where Φtop
2,5 psq P Zrss is an explicitly determined irreducible polynomial of degree 71

and Ψtop
2,5 psq is

p38s ´ 225qp37s ´ 223qp35s ´ 216qp31s ´ 199qp31s ´ 200qp29s ´ 189qp29s ´ 190q

p26s ´ 165qp25s ´ 153qp25s ´ 161qp25s ´ 166qp23s ´ 151qp23s ´ 153qp22s ´ 141q

p22s ´ 145qp21s ´ 130qp20s ´ 131qp19s ´ 112qp19s ´ 122qp17s ´ 93qp17s ´ 108q

p17s ´ 112qp17s ´ 113qp15s ´ 89qp14s ´ 85qp13s ´ 70qp13s ´ 81qp13s ´ 82q

p13s ´ 88qp12s ´ 77qp11s ´ 71qp11s ´ 72qp10s ´ 63q2p9s ´ 44qp9s ´ 46qp9s ´ 47q

p9s ´ 55qp9s ´ 58q2p9s ´ 59qp8s ´ 45qp8s ´ 51qp8s ´ 53q2p7s ´ 41qp7s ´ 43q2

p7s ´ 46q2p6s ´ 37qp5s ´ 21qp5s ´ 22qp5s ´ 23qp5s ´ 24qp5s ´ 31qp5s ´ 32q

p5s ´ 33q2p4s ´ 21qp4s ´ 23q3p4s ´ 25qp3s ´ 14qp3s ´ 16qp3s ´ 17qp3s ´ 19q2

p3s ´ 20q2p2s ´ 11q2p2s ´ 13q3ps ´ 1qps ´ 2qps ´ 3qps ´ 4q2ps ´ 6q4s.

For d “ 6, the computation of both the p-adic and the topological zeta function
is currently out of our reach. We record the explicit formula for the reduced zeta
function, computed using Evseev’s method.

Theorem 7.8 (d “ 6, reduced; [7]).

ζredf2,6ptq “
Φred
2,6 ptq

p1 ´ t61q6p1 ´ t5q6p1 ´ t4q6p1 ´ tq3
,
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where Φred
2,6 ptq is

t72 ` 3t71 ` 36t70 ` 145t69 ` 669t68 ` 2562t67 ` 8649t66 ` 27045t65 ` 77670t64

` 206735t63 ` 515748t62 ` 1211748t61 ` 2692110t60 ` 5682609t59

` 11436687t58 ` 22007442t57 ` 40598238t56 ` 71961840t55 ` 122797673t54

` 202076190t53 ` 321171642t52 ` 493662867t51 ` 734688480t50 ` 1059758436t49

` 1482992565t48 ` 2014885665t47 ` 2659813131t46 ` 3413604248t45 ` 4261613451t44

` 5177738109t43 ` 6124749888t42 ` 7056165426t41 ` 7919643378t40 ` 8661618634t39

` 9232638888t38 ` 9592688376t37 ` 9715718352t36 ` 9592688376t35 ` 9232638888t34

` 8661618634t33 ` 7919643378t32 ` 7056165426t31 ` 6124749888t30 ` 5177738109t29

` 4261613451t28 ` 3413604248t27 ` 2659813131t26 ` 2014885665t25 ` 1482992565t24

` 1059758436t23 ` 734688480t22 ` 493662867t21 ` 321171642t20 ` 202076190t19

` 122797673t18 ` 71961840t17 ` 40598238t16 ` 22007442t15 ` 11436687t14

` 5682609t13 ` 2692110t12 ` 1211748t11 ` 515748t10 ` 206735t9

` 77670t8 ` 27045t7 ` 8649t6 ` 2562t5 ` 669t4 ` 145t3 ` 36t2 ` 3t ` 1.

Our computations of p-adic zeta functions allow us to confirm the second part of
[10, Conjecture IV (P-adic form)] for small values of d.

Corollary 7.9. For all d P t2, 3, 4u, the following holds:

ζf2,dpoqpsq

ζoDpsq

ˇ

ˇ

ˇ

ˇ

s“0

“ 1,

where D “ d ` d1 “
`

d`1
2

˘

is the Z-rank of f2,d.

The conjecture’s first part holds for all d and all but a finite number of qo, see The-
orem 5.13.
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