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Abstract. Nori’s Eisenstein cohomology classes and their integral refinements due to Beilinson,
Kings and Levin can be used to obtain simple proofs of the rationality and integrality properties of
special values of abelian L-functions of totally real fields. Here we introduce an adelic refinement
of these constructions. This will be used to establish new divisibility properties of Stickelberger
elements associated to abelian extensions of totally real fields.
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1. Introduction

In this paper we introduce an adelic refinement of the Eisenstein cohomology classes introduced
by Beilinson, Kings and Levin in [1] (which in turn are an integral refinement of the Eisenstein
classes introduced by Nori [16]). The classes of Beilinson, Kings and Levin are elements in the
cohomology of GLn(Z) – or some of its subgroups – in degree n−1 with coefficients in the completed
group ring of the free-abelian group Zn. Their construction is given in terms of GLn(Z)-equivariant
sheaf cohomology on the n-dimension real torus Rn/Zn with coefficients in the so called logarithm
sheaf L og, the locally constant sheaf associated to the completed group ring.

The adelic Eisenstein classes introduced in this paper are cohomology classes of the group GLn(Q)
in degree n−1 with coefficients in a module Dlpol which we call the module of locally polynomial

distributions on Qn.1 In principle our construction is modelled after that introduced in [1]. We
consider the GLn(Q)-equivariant sheaf cohomology of the adelic solenoid (A/Q)n. However one of
the difficulties in generalizing the approach of [1] to the adelic setting is that the usual topology
of the adeles and the adele class group is too fine to produce meaningful sheaf cohomology groups.
Instead we introduce a certain coarse Grothendieck topology – which we call lattice topology – and
develop a GLn(Q)-equivariant sheaf cohomology with respect to this topology. Another difficulty

Both authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
via the grant SFB-TRR 358/1 2023 — 491392403.

1More precisely for technical reasons we have to work with a proper ”large” subgroup Γ ⊆ GLn(Q) and distributions
on a certain Γ-stable subset of Qn; for the purpose of keeping this introduction less technical we divert to section 4
for details.
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that we encountered is the fact that the logarithm sheaf does not seem to admit a natural adelic
counterpart. We work instead with the sheaf of locally polynomial distributions D .

The interest in studying Eisenstein cohomology classes lies in their relation to special values of
L-functions. This was first exploited by Nori (and independently by Sczech in [19]) who reproved
the Theorem of Siegel and Klingen regarding the rationality of the values of partial zeta functions of
totally real fields at non-positive integers. Using their integral refinement of Nori’s classes Beilinson,
Kings and Levin were able to reprove the integrality results of Cassou-Noguès and Deligne-Ribet
for these special L-values.2 Our adelic variants of the Eisenstein classes allow us to refine these
results further by proving certain divisibility properties for Stickelberger elements at non-positive
integers. A first result in this direction had been obtained in joint work of the second author
with S. Dasgupta [7]. There a different and rather concrete construction of Eisenstein cohomology
classes – based on Shintani’s method to study special L-values – had been used. We feel that
the construction using equivariant sheaf cohomology introduced here is conceptually particularly
satisfying and that it adds a new tool to study properties of special L-values. The relation between
the Eisenstein classes introduced here and in [7] remains unclear.3

We now give the reader some idea about the topological (i.e. topos-theoretic) constructions on
which our definition of the adelic Eisenstein classes is based. For the purpose of keeping the technical
details to a minimum we consider here only a somewhat simplified situation and refer to sections
2, 3 and 4 for the general framework. We fix a totally real number field F ⊆ C of degree n over Q
with ring of intergers OF . Let I denote the set of all fractional ideals of F . We attach to the ring
of finite adeles Af , the ring of adeles A and the adele class group A/F of F certain sites4 denoted
by B, A and T . We refer to these as lattice topologies on Af , A and A/F respectively. They are
much coarser than the usual topologies. For example an open subset U ⊆ B (i.e. an object of B)
is a subset U ⊆ Af that is â-stable for some fractional ideal a ∈ I (i.e. we have â + U = U). Here

â := a ⊗ Ẑ is the closure of a in Af . A covering of an open subset U ⊂ B consists of a collection
of open subsets {Ui}i of B so that U =

⋃
i Ui and so that there exists a ∈ I such that each Ui is

â-stable. The lattice topologies A and T are defined in a similar way.

The group Γ̃ := F ∗ n F acts continuously on B and A whereas Γ := F ∗ acts continuously on
T . Moreover the site T can be identified with the ”quotient” of A with respect to the natural

projection pr : A → A/F . Hence the pull-back pr∗ : Sh(T,Γ) → Sh(A, Γ̃) defines an equivalence

between the category of Γ̃-equivariant sheaves on A and the category of Γ-equivariant sheaves on
T . The basic properties of (equivariant) sheaf cohomology for sites of the type B, A and T will be
established in section 3.

The construction of the Γ-equivariant sheaf D on T is based on the notion of a locally polynomial
function which we now review. Let U ⊆ B be an open subset and put U := U∩F . A map f : U → Z
is called a locally polynomial function if there exists a ∈ I such that U is â-stable and so that for a
Z-basis (ω1, . . . , ωn) of a and for every x ∈ U the map Zn → Z, (x1, . . . , xn) 7→ f(x+

∑n
i=1 xiωi) is

a polynomial function, i.e. there exists a polynomial P ∈ Q[X1, . . . , Xn] with f(x +
∑n

i=1 xiωi) =
P (x1, . . . , xn) for every x1, . . . , xn ∈ Z. The locally polynomial function f : U → Z is said to be
of bounded support if there exists a ∈ I such that U is a-stable and so that the support of f is
contained in finitely many a-orbits in U . We denote by Intlpol,b(U ,Z) the ring of locally polynomial
functions on U of bounded support and put Dlpol(U) := Hom(Intlpol,b(U ,Z),Z). The assignment

2Similar results were obtained by Charollois and Dasgupta in [4] using an integral refinement of Sczech’s classes.
3It should be noted that both construction differ insofar that the two methods produce classes in different coho-

mology groups, i.e. in cohomology groups for different ”large” subgroups Γ of GLn(Q). It turns out that one obtains
also slightly different divisibility properties for Stickelberger elements; see Remark 1.2 (b) below for details.

4We use here a definition of a site that is not the standard notion familiar to researchers in algebraic or arithmetic
geometry. For this reason we review in the appendix the necessary background material regarding sites and topoi
that we use throughout this paper.
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U 7→ Dlpol(U) defines a Γ̃-equivariant sheaf on B, the sheaf of locally polynomial distributions on
B. By pulling it back to A via the morphism prB : A → B induced by the natural projection

A = Af × F∞ → Af we obtain a Γ̃-equivariant sheaf Dlpol,A = (prB)∗(Dlpol) on A. As alluded to
above the sheaf Dlpol,A decends to a Γ-equivariant sheaf D on T , i.e. we have pr∗(D) = Dlpol,A.

In section 4 we investigate the (Γ-equivariant) cohomology groups of T with coefficients in D . One
of our key results (cf. Prop. 4.5) is that the cohomology H•(T,D) is concentrated in degree n and
that we have Hn(T,D) ∼= Z. We then proceed in defining the adelic Eisenstein classes following the
blueprint of Beilinson, Kings and Levin. We also establish a direct connection between our classes
and theirs (cf. Prop. 4.13). This will be used in section 5 to link the adelic Eisenstein classes to
special values of partial zeta functions and to Stickelberger elements.

We now describe our main application.5 Namely, in section 6 we prove certain divisibility prop-
erties of Stickelberger elements. For that we fix a finite abelian extension K/F , K ⊆ C with Galois
group G. Let S be a finite set of nonarchimedean places of F that contains all places that are
ramified in K. Recall that the partial zeta function associate to an element σ ∈ G is given by

(1) ζS(σ, s) =
∑

(a,S)=1,σa=σ

N(a)−s

for Re(s) > 1 where σa is the image of the ideal a under the Artin map. It admits a meromorphic
continuation to the whole complex plane with a single simple pole at s = 1. We package the partial
zeta functions into a C[G]-valued function ΘS(K/F, s) – the Stickelberger element – defined by

(2) ΘS(K/F, s) =
∑
σ∈G

ζS(σ, s)[σ−1].

By the Theorem of Siegel and Klingen we have ΘS(K/F,−k) ∈ Q[G] for k ∈ Z≥0. It is well-known
that in order to obtain integrality results it is necessary to consider a variant of (2), namely the
T -smoothed Stickelberger element ΘS,T (K/F, s) defined by

(3) ΘS,T (K/F, s) =
∏
q∈T

(1−N(q)1−s[σ−1
q ])ΘS(K/F, s).

Here T is an additional set of nonarchimedean places of F that is disjoint of S. Under certain mild
conditions on T we have ΘS,T (K/F,−k) ∈ Z[G] for k ∈ Z≥0.6

To state our result we will introduce some ideals in the group ring Z[G]. For a place v of F let
Gv ⊆ G be the decomposition group of v. If v is nonarchimedean then we denote by Iv ⊆ Gv the
inertia group at v and let σv ∈ Gv/Iv be the Frobenius at v. If v is archimedean then σv denotes

the generator of Gv. For k ∈ Z≥0 and v ∈ S ∪ S∞ we define ideals I(k)
v ⊆ Z[G] by

I(k)
v :=

{
ker
(
Z[G]→ Z[G/Iv]/([σ

−1
v ]−N(v)k)

)
if v -∞,

([σv] + (−1)k+1)Z[G] if v | ∞.

Note that for k = 0 we have I(0)
v = ker(Z[G]→ Z[G/Gv]) for every v ∈ S ∪ S∞.

We also consider the following obvious map between Galois cohomology groups

(4) H0(K,Q/Z(k + 1)) −→
⊕
v∈TK

H0(k(v), (Q/Z)′(k + 1))

where TK denotes the set of places of K that lie above a place in T and where k(v) is the residue
field of v ∈ TK . The Galois module Q/Z(k + 1) appearing in the source of (4) is the group

5It should also be possible to use our adelic Eisenstein classes to give formulas for Brumer-Stark units similar to
those obtained using Shintani cocycles (see [7], §6 or [6]); this question however will not be addressed in this paper.

6See the remark following Thm. 1.1.
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Q/Z with the action of the absolute Galois group GK = Gal(K/K) of K given by the (k+1)-

th power of the cyclotomic character χcycl : GK → Aut(µ(Q)) ∼= Ẑ∗.7 Similarly, for a place
v ∈ TK with residue characteristic p, the Galois modules (Q/Z)′(k+ 1) appearing in the summand
H0(k(v), (Q/Z)′(k + 1)) of the target of (4) is the group (Q/Z)′ := {x ∈ Q/Z | gcd(ord(x), p) =
1 } =

⊕
6̀=pQ`/Z` where the action of the absolute Galois group Gk(v) = Gal(Fp/k(v)) is again given

by the (k+1)-th power of the cyclotomic character χcycl : Gk(v) → Aut(µ(Fp)) = Aut(F∗p) ∼= (Ẑ′)∗

(with Ẑ′ :=
∏
6̀=p Z`).

Note that if k = 0 then (4) is the obvious map µ(K)→
⊕

v∈TK µ(k(v)). Our main result is

Theorem 1.1. Let k ∈ Z≥0 and let p ∈ S be a fixed place. Let T be a finite set of nonarchimedean
places of F disjoint from S such that the map (4) is injective. Then we have

(5) ΘS,T (K/F,−k) ∈
∏

v∈S∪S∞,v 6=p

I(k)
v .

Hence under the assumption that (4) is injective we have in particular ΘS,T (K/F,−k) ∈ Z[G].

Remarks 1.2. (a) The map (4) is injective if T contains two primes of different residue character-
istics. It is also injective if k = 0 and if T contains one prime of residue characteristic larger than
n+ 1.

(b) Theorem 1.1 is already known in the case k = 0. It has first been proved in [7], except there it was

shown – under certain mild assumption on T – that ΘS,T (K/F, 0) is contained in
∏
v∈S∪S∞,v 6=v0

I(0)
v

where v0 is a fixed archimedean place of F . Hirose [10] later obtained the slightly stronger result
(5). In fact in his work the ”exceptional place” p can be any element of S ∪S∞. It should be noted
that in both papers [7] and [10] the ”Shintani method” of constructing a degree (n−1) Eisenstein
cohomology class is used.

By work of Burns [2] it is known that (5) (for k = 0) can also be deduced from a special case of
the equivariant Tamagawa number conjecture. The latter has been established recently in [5] if K
is a CM field.

(c) For k > 0 the only previously known result towards (5) is the assertion that ΘS,T (K/F,−k) is

contained in the product of the ideals I(k)
v taken over all archimedean places v of F except one (see

[7], Thm. 5.9 (b)).

We now explain the strategy of the proof of Theorem 1.1. Our method is of course related to
that developed in [7]. We use however a somewhat different homological algebra machine that is
partly inspired by ideas of Hirose [10]. Firstly, as in [7] we represent the Stickelberger element at
s = −k as a cap product of some adelic Eisenstein class Eis with a homology class that is naturally
associated to the global reciprocity map for the extension K/F . The key novelty in our approach
is that we enrich this homology class ”locally” at each place in S \ {p}. This new class does not
lie in a homology group anymore but in a certain hyperhomology group that can be capped with
Eis as well. The resulting element then lies in a degree-0 hyperhomolgy group that maps naturally

into the product of the ideals I(k)
v thus implying the divisibility result (5) (firstly though only when

T = {q} and up denominators that are powers of the residue characteristic of q; by varying q
and using an argument involving Čebotarev’s density theorem we are then able to get rid of the
denominators).

7For any field E we denote by µ(E) the roots of unity of E.
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Notation. Throughout this paper we use the following notation. For sets X and Y we let
Maps(X,Y ) be the set of maps X → Y . For a partially ordered set I = (I,≤) we denote by
Iopp the same set but with the reversed partial ordering. The torsion subgroup of an abelian group
A will be denoted by Ator.

By Top we denote the category of Hausdorff spaces with continuous maps as morphisms. If
X,Y ∈ Top then we let C(X,Y ) ⊆ Maps(X,Y ) denote the subset of continuous maps X → Y .
Note that if Y is discrete then C(X,Y ) consists of locally constant maps X → Y . If Y = R is a
ring (equipped with the discrete topology) then we let Cc(X,R) denote the subset of C(X,R) of
locally constant maps with compact support.

Unless stated otherwise all rings are commutative with 1 6= 0. For a ring R we denote by ModR
the category of left R-modules. If A is an R-algebra and N an R-module then we put NA = N⊗RA.
If M• is a bounded complex of R-modules then we denote by Hn(M•) its n-th homology module.
Also if M• and N• are bounded complexes of R-modules then we denote by M•⊗RN• the associated
double complex and also – by abuse of notation – its total complex. If G is a group and χ : G→ R∗

a character (i.e. a homomorphism) then we denote by R(χ) the R[G]-module R with G-action given
by χ. More generally if M is an R[G]-module then M(χ) denotes the R[G]-module M ⊗R R(χ).

For a ring R we denote by Aff(R) the group R∗ n R, i.e. Aff(R) is the subgroup of GL2(R) of

matrices of the form

(
a b
0 1

)
with a ∈ R∗ and b ∈ R. More generally for an R-module M we denote

by AffR(M) the group GL(M)nM . We often identify an element ϕ = (α,m) ∈ AffR(M) with the
map ϕ : M →M it induces, i.e. the map M →M,x 7→ α(x) +m.

Let V be a finite-dimensional Q-vector space. By a lattice L in V we mean a finitely generated
subgroup of V that generates V as a vector space, i.e. we have rank(L) = dim(V ). The set of
lattices in V will be denoted by Lat(V ). More generally if F is an algebraic number field with
ring of integers OF and if V is a finite-dimensional F -vector space then we denote by LatOF (V )
the set of all lattice L in V that are also OF -submodules of V . In particular LatOF (F ) is the set
of fractional ideals of F . We say that V is oriented if VR is equipped with an orientation. In this
case a basis (v1, . . . , vn) of V is called positively oriented if it belongs to the orientation.

Places of F will be denoted by v, w or also by p, q etc. if they are finite. In the latter case we
denote the corresponding prime ideal of OF by p, q etc. as well. The norm of a fractional ideal a of
F will be denoted by N(a). By EF = O∗F we denote the group of global units of F . More generally
for a finite set S of nonarchimedean places of F we let ES = EF,S be the group of S-units of F .
For a prime number p we denote by Sp the set of primes of F that lie above p and by S∞ the set
of archimedean places of F . For a place v of F we denote by Fv the completion of F at v. Also
we let | · |v be the associated normalized multiplicative valuation on Fv. If v is nonarchimedean
then Ov denotes the valuation ring of Fv, Uv = O∗v its group of units and ordv the corresponding
the normalized (additive) valuation on Fv (so ordv($v) = 1 if $v ∈ Ov is a local uniformizer at v).

Moreover if v = p is finite then given a non-negative integer m ≥ 0 we let U
(m)
p be the m-th higher

unit group, i.e. U
(m)
p = {x ∈ Up | x ≡ 1 mod pmOp}.

In sections 5 and 6 we assume that F is totally real field of degree n over Q. Recall that if
v ∈ S∞ corresponds to the embedding ξ : F → R then |x|v = |ξ(x)| and if v = q is finite then

|x|q = N(q)− ordq(x). For v ∈ S∞ we put Uv = R+ = {x ∈ R | x > 0}. We denote by A = AF
(resp. Af = AF,f ) the ring of adeles of F (the ring of finite adeles). For a set S of places of F we

let AS (resp. ASf ) denote the ring of S-adeles (resp. finite S-adeles). We also define US =
∏
v 6∈S Uv,

USf =
∏
v 6∈S,v-∞ Uv and US =

∏
v∈S Uv. If S contains all archimedean places then the factor group

(AS)∗/US is canonically isomorphic to the group IS of fractional OF -ideals that are coprime to S.
We sometimes view F as a subring of AS via the diagonal embedding. If S consists of finitely many
nonarchimeden places then we let OS := F ∩

⋂
v∈S Ov be the associated semilocal subring of F .
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If Σ is a set of places of Q then SΣ denotes the set of places of F which lie above a place of Σ.
We often write AS,Σ, AS,Σ etc. for AS∪SΣ

, AS∪SΣ etc. We also write US,p, US,p, U
S,∞, Up,∞ etc. for

US,{p}, US,{p}, U
S∪S∞ , USp∪S∞ etc. and use a similar notation for adeles. For example AS,∞ = ASf

denotes the ring S ∪ S∞-adeles of F . If S = ∅ then we drop it from the notation (e.g. Ap denotes
the set of Sp-adeles of F for a prime p). For p ∈ {2, 3, 5, . . . ,∞} we put Fp = F ⊗Qp =

∏
v∈Sp Fv.

We shall denote by F ∗+, E+ = EF,+, ES,+ etc. the elements of F , EF , ES etc. that are positive with
resp. to every embedding F ↪→ R.

For an ideal m ⊆ OF , m 6= (0) we let Fm be the ray class field of F in the narrow sense associated

with m. If Um denotes the open subgroup Um =
∏

p-∞ U
(mp)
p ×

∏
v|∞ Uv of A∗ with mp being the

exponent of p occurring in m, then the Galois group Gal(Fm/F ) is isomorphic to A∗/F ∗Um via the
reciprocity map. Or in terms of ray class groups we have Gal(Fm/F ) ∼= Im/Pm. Here Im := ISm

and Sm is the set of nonarchimedan places of F that divide m and Pm is the subgroup of Im

consisting of principal fractional ideals (x) with x ∈ F ∗+ and x ∈ U
(mp)
p for all p ∈ S. We also

denote by Em (resp. Em,+) the subgroup of EF consisting of units ε ∈ EF (resp. ε ∈ EF,+) that are
≡ 1 modulo m. Thus we have Em,+ = F ∗ ∩ Um.

2. Locally polynomial functions and distributions

Polynomial functions and polynomial distributions on lattices. In the following by a lattice
we mean a free-abelian group L of finite rank. For a subring R of Q we recall the notion of an
R-valued polynomial function on L (see e.g. [3], Ch. XI).

Definition 2.1. Let L be a lattice of rank n. A map f : L→ R is called an (R-valued) polynomial
function if for some (hence any) choice of a Z-Basis λ1, . . . , λn of L there exists a polynomial
P (X1, . . . , Xn) ∈ Q[X1, . . . , Xn] such that

f(x1λ1 + . . .+ xnλn) = P (x1, . . . , xn) ∀ (x1, . . . , xn) ∈ Zn.
By Int(L,R) we denote the ring of all R-valued polynomial functions f : L→ R.

In particular if L = Zn then a polynomial P (X1, . . . , Xn) ∈ Q[X1, . . . , Xn] – viewed as a map
Zn 3 (x1, . . . , xn) 7→ P (x1, . . . , xn) – lies in Int(Zn, R) if and only if it has values in R. For m ∈ Z≥0

we put
(
X
m

)
=

∏m−1
i=0 (X−i)

m! ∈ Q[X]. More generally for a multi-index m = (m1, . . . ,mn) ∈ (Z≥0)n

we set

(6)

(
X

m

)
:=

n∏
i=1

(
Xi

mi

)
∈ Q[X1, . . . , Xn].

Any polynomial P ∈ Q[X1, . . . , Xn] can be uniquely written as

P (X1, . . . , Xn) =
∑

m∈(Z≥0)n

a(m)

(
X

m

)
where the coefficients a(m) lie in Q and vanish for almost all m ∈ (Z≥0)n. The polynomial P lies
in Int(Zn, R) if and only if all its coefficients a(m) lie in R, i.e. the polynomial functions (6) form
an R-basis of Int(Zn, R) for any subring R ⊆ Q (cf. [18, 17]).

For an arbitrary ring R we define

Int(L,R) := Int(L,Z)⊗R.
As explained above if R ⊆ Q then this definition agrees with the previous one. We can attach to
an element f =

∑r
i=1 fi ⊗ ai ∈ Int(L,R) a map L→ R given by L 3 λ 7→

∑r
i=1 fi(λ)ai. Therefore

elements of Int(L,R) will be called R-valued polynomial functions on L and we use the symbolic
notation f : L→ R. In practice we consider only the case where R is torsionfree so that the passage
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from an element of Int(L,R) to the map L→ R does not ”loose information” (i.e. the obvious map
Int(L,R)→ Maps(L,R) is injective if Rtor = 0).

If ϕ : L′ → L is an affine map between lattices (i.e. L′ → L, λ 7→ ϕ(λ)−ϕ(0) is a homomorphism)
then ϕ∗ : Maps(L,Z) → Maps(L′,Z), f 7→ f ◦ ϕ maps the subring Int(L,Z) into Int(L′,Z) hence
induces – by extension of scalars – a ring homomorphism ϕ∗ : Int(L,R)→ Int(L′, R). In particular
if L′ ⊆ L and ϕ is the inclusion then we denote ϕ∗ by Int(L,R)→ Int(L′, R), f 7→ f |L′ and call it
restriction. If L = L′ and ϕ : L→ L is the translation by a fixed element λ ∈ L then we denote ϕ∗

by τλ (hence we have τλ(f)(v) = f(v + λ) for all v ∈ L). The map τλ : Int(L,R) → Int(L,R) will
be called translation (by λ).

Lemma 2.2. (a) Let L′ ⊆ L be a subgroup of the same rank n and assume that the index d = [L : L′]
is invertible in R. Then the restriction Int(L,R)→ Int(L′, R), f 7→ f |L′ is an isomorphism.

(b) For every polynomial function f : L → R there exists finitely many polynomial functions
f1, . . . , fr, g1, . . . , gr : L→ R such that

(7) τλ(f) =

r∑
i=1

gi(λ)fi

for every λ ∈ L.

Proof. (a) We choose basis λ1, . . . , λn of L and positive integers d1, . . . , dn such that d1λ1, . . . , dnλn
is a basis of L′ so that d = d1 · . . . ·dn . If P (X1, . . . , Xn) ∈ Q[X1, . . . , Xn] is a polynomial such that
P (d1x1, . . . , dnxn) ∈ Z[1/d] for every (x1, . . . , xn) ∈ Zn then, clearly, we also have P (x1, . . . , xn) ∈
Z[1/d] for every (x1, . . . , xn) ∈ Zn. Thus the restriction Int(L,Z[1/d]) → Int(L′,Z[1/d]), f 7→ f |L′
is an isomorphism. Tensoring it with R yields the assertion.

(b) It suffices to consider the case L = Zn, R = Z and f =
(
X
m

)
. In this case the assertion follows

from (
X + Y

m

)
=

∑
k∈(Z≥0)n,k�m

(
X

k

)(
Y

m− k

)
.

Here we have equipped (Z≥0)n with the following partial order: for k = (k1, . . . , kn), l = (l1, . . . , ln) ∈
(Z≥0)n we define k � l if ki ≤ li for all i = 1, . . . , n. �

Definition 2.3. Let R be a ring. The R-module of (R-valued) polynomial distributions on L is
defined as

Dpol(L,R) = HomZ(Int(L,Z), R) = HomR(Int(L,R), R).

For µ ∈ Dpol(L,R) we write
∫
L f(λ)dµ(λ) for the evaluation of µ at f ∈ Int(L,R). Convolution

defines a ring structure on Dpol(L,R). Concretely, the product µ1 ? µ2 of two elements µ1, µ2 ∈
Dpol(L,R) is defined as usual by

(8)

∫
L
f(λ)d(µ1 ? µ2)(λ) =

∫
L

(∫
L
f(λ1 + λ2)dµ2(λ2)

)
dµ1(λ1)

for every f ∈ Int(L,R). Note that by Lemma 2.2 (b) the map λ1 7→
∫
L f(λ1 + λ2)dµ2(λ2) lies

again in Int(L,R), so that (8) is well-defined. More precisely, for f ∈ Int(L,R) we can choose
f1, . . . , fr, g1, . . . , gr ∈ Int(L,R) such that (7) holds. Then

L −→ R, λ1 7→
∫
L
f(λ1 + λ2)dµ2(λ2)

is the symbolic notation for the element
∑r

i=1

(∫
L fi(λ2)dµ2(λ2)

)
gi of Int(L,R).
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Example 2.4. Let L be a lattice of rank n and let R = K be a field of characteristic 0. Let
ξ1, . . . , ξn : L → K be a K-basis of Hom(L,K). Then ξ1, . . . , ξn can be viewed as elements
of Int(L,K). In fact elements of Int(L,K) can be written as polynomials in ξ1, . . . , ξn, i.e. the
collection of functions ξm :=

∏n
k=1 ξ

mk
k for m ∈ (Z≥0)n form a K-basis of Int(L,K). Hence there

exists unique elements z1, . . . , zn ∈ Dpol(L,K) given by zi(ξ
m) = 1 if m = ei and zi(ξ

m) = 0 if
m 6= ei. For a = (a1, . . . , an) ∈ (Z≥0)n the element za := za1

1 · . . . · zann ∈ Dpol(L,K) is characterised
by

(9) za(ξm) =

{
a! if a = m,
0 otherwise

(with a! =
∏n
k=1 ak!) for every m ∈ (Z≥0)n.

Let R[L] denote the R-group algebra of L. For λ0 ∈ L we let δλ0 ∈ Dpol(L,R) be the Dirac
distribution, i.e. for f ∈ Int(L,R) we have

∫
L f(λ)dδλ0(λ) = f(λ0). Since δλ1 ? δλ2 = δλ1+λ2 for all

λ1, λ2 ∈ L the map L→ Dpol(L,R), λ 7→ δλ extends to a ring homomorphism

(10) δ : R[L] −→ Dpol(L,R),
∑
λ∈L

aλ[λ] 7→
∑
λ∈L

aλ δλ.

The collection of translations τλ for λ ∈ L induces an R[L]-module structure on Int(L,R) given by

? : R[L]× Int(L,R) −→ Int(L,R),

(∑
λ∈L

aλ[λ]

)
? f :=

∑
λ∈L

aλ · τλ(f).

Note that for µ ∈ Dpol(L,R), α ∈ R[L] and f ∈ Int(L,R) we have

(11)

∫
L
f(λ) d(δ(α) ? µ)(λ) =

∫
L

(α ? f)(λ) dµ(λ).

By R[[L]] we denote the completion of R[L] with respect to the kernel I(L) of the augmentation
map ε : R[L]→ R,

∑
λ∈L aλ[λ] 7→

∑
λ∈L aλ, i.e. we have

R[[L]] = lim
←−
m

R[L]/I(L)m.

Proposition 2.5. The homomorphism (10) induces an isomorphism of R-algebras

R[[L]] −→ Dpol(L,R).

Proof. For m ∈ Z≥0 we let Intm(L,Z) be the submodule of Int(L,Z) of integer-valued polynomial
functions f : L → Z of degree ≤ m, i.e. the total degree of the polynomial P (X1, . . . , Xn) in
Definition 2.1 is ≤ m. Put Intm(L,R) := Intm(L,Z)⊗R, Dpol,m(L,R) := Hom(Intm(L,Z), R) and
let

(12) R[L] −→ Dpol,m(L,R),
∑
λ∈L

aλ[λ] 7→
∑
λ∈L

aλ res(δλ)

be the composite of (10) with the obvious restriction map res : Dpol(L,R)→ Dpol,m(L,R). We will
show that (12) is surjective with kernel I(L)m+1. Hence it induces an isomorphism

(13) R[L]/I(L)m+1 −→ Dpol,m(L,R).

Passing to the inverse limit over all m yields the assertion.
For the surjectivity of (12) it suffices to consider the case L = Zn. Let µ ∈ Dpol,m(Zn, R) and let

Ξ be the set of k = (k1, . . . , kn) ∈ (Z≥0)n such that
∑n

i=1 ki ≤ m. To see that µ lies in the image
of (12) it is enough to show that there exists

(
ak
)
k∈Ξ
∈ RΞ such that

(14) µ =
∑
k∈Ξ

ak res(δk).
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Since the polynomials
(X
l

)
, with l ∈ Ξ form an R-basis of Intm(Zn, R), an element

(
ak
)
k∈Ξ
∈ RΞ

satisfies (14) if and only if it is a solution to the system of linear equations

(15) µ

((
X

l

))
=
∑
k∈Ξ

ak

(
k

l

)
∀ l ∈ Ξ.

For that we equip Ξ with the lexicographic order, i.e. for k = (k1, . . . , kn), l = (l1, . . . , ln) we have
k < l if there exists an index i ∈ {1, . . . , n} such that kj = lj for j = 1, . . . , i− 1 and ki < li. Note
that (

k

l

)
=

{
0 if k < l,
1 if k = l.

so that
((k

l

))
k,l∈Ξ

is an upper triangular matrix with entries in Z and diagonal entries = 1. Hence

the system of equations (15) has a unique solution
(
ak
)
k∈Ξ
∈ RΞ.

To show that I(L)m+1 lies in the kernel of (12) we argue as in ([7], Lemma 4.3). Note that for
λ ∈ L and f ∈ Intm(L,R) we have ([λ] − [0]) ? f = τλ(f) − f ∈ Intm−1(L,R). It follows that
I(L) ? Intm(L,R) ⊆ Intm−1(L,R), hence I(L)m+1 ? Intm(L,R) = 0. Since by (11) we have for
α ∈ I(L)m+1 and f ∈ Intm(L,R)∫

L
f(λ) dδ(α)(λ) =

∫
L

(α ? f)(λ) dδ0(λ) = 0

we conclude that I(L)m+1 lies in the kernel of (12).
We have shown that (12) induces an epimorphism (13). To show that the latter is an isomorphism

it suffices to remark that both source and target are free R-modules of the same rank. Since
Intm(L,R) is a free R-module of rank ](Ξ) =

(
m+n
m

)
, the same is true for its dual Dpol,m(L,R). On

the other hand the choice of a basis λ1, . . . , λn of L yields an isomorphism R[T±1
1 , . . . , T±1

n ] ∼= R[L]
hence an isomorphism

R[t1, . . . , tn]/(t1, . . . , tn)m+1 ∼= R[L]/I(L)m+1

with ti := Ti−1 for i = 1, . . . , n. Thus R[L]/I(L)m+1 is a free R-module of rank
(
m+n
m

)
as well. �

The lattice L together with the choice of an orientation (i.e. an orientation on LR) will be called
an oriented lattice. A Z-basis (λ1, . . . , λn) of L will be called positively oriented if the induced
isomorphism LR → Rn preserves the orientation

Corollary 2.6. Let L be an oriented lattice of rank n. Then there exists a canonical isomorphism

ExtiR[L](R,Dpol(L,R)) =

{
R if i = n,
0 if i 6= n.

for every i ∈ Z≥0.

Proof. This follows from Prop. 2.5 and ([1], Thm. 3.25). We give a purely algebraic proof. First
we assume that L = Zn so that R[Zn] can be identified with the ring of Laurent polynomials in n
variable R[T±1

1 , . . . , T±1
n ], I(L) with the ideal (t1, . . . , tn) with ti := Ti−1 and Dpol(Zn, R) ∼= R[[Zn]]

with the power series ring R[[t1, . . . , tn]] ∼= lim
←−m

R[T±1
1 , . . . , T±1

n ]/(t1, . . . , tn)m. We have to show

(16) Exti
R[T±1

1 ,...,T±1
n ]

(R,R[[t1, . . . , tn]]) =

{
R if i = n,
0 if i 6= n.

Since t := (t1, . . . , tn) form a regular sequence of R[T±1
1 , . . . , T±1

1 ] we have (see [23], Cor. 4.5.5 and
Ex. 4.5.2)

Exti
R[T±1

1 ,...,T±1
n ]

(R,M) = H i(t,M) = Hn−i(t,M)
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for any R[T±1
1 , . . . , T±1

n ]-module M and any i ∈ Z≥0 (here H•(t,M) and H•(t,M) denote Koszul
cohomology and homology). Note also that t1, . . . , tn forms a regular sequence of R[[t1, . . . , tn]] and
that we have

R[[t1, . . . , tn]]/(t1, . . . , tn) ∼= R[[t1, . . . , tn−1]]/(t1, . . . , tn−1) ∼= . . . ∼= R[[t1]]/(t1) ∼= R.

Thus (16) follows from ([23], Cor. 4.5.4).
Now assume that L is an arbitrary lattice of rank n. The choice of a basis λ = (λ1, . . . , λn) of L

induces an isomorphism

(17) ExtnR[L](R,Dpol(L,R)) ∼= ExtnR[Zn](R,Dpol(Zn, R)) ∼= R.

Changing the basis changes the isomorphism by the factor sign(det(A)) where A ∈ GLn(Z) is the
associated transition matrix. Thus if L is oriented and if we choose a basis that is positively oriented
then the isomorphism (17) does not depend on this choice. �

We finish this section by introducing generalizations of Definitions 2.1 and 2.3 to (left) L-sets.
Recall that the latter is a set H together with an L-action + : L ×H → H, (λ, h) 7→ λ + h. The
example the reader should have in mind is that L is a subgroup of a rational vector space V and
H is an L-stable subset of V , i.e. we have λ+h ∈ H for every λ ∈ L and h ∈ H. An L-subset of H
is a subset H ′ ⊆ H that is stable under the L-action. An L-set H will be called finite if there are
only finitely many L-orbits. Thus a finite L-subset H ′ of an L-set H is an L-subset that is finite
as an L-set.

Definition 2.7. Let H be an L-set.

(a) A map f : H → Z is called an integer-valued polynomial function if for every of h ∈ H and
every Z-Basis λ1, . . . , λn of L there exists a polynomial P (X1, . . . , Xn) ∈ Q[X1, . . . , Xn] such that

f(x1λ1 + . . .+ xnλn + h) = P (x1, . . . , xn) ∀ (x1, . . . , xn) ∈ Zn.

The ring of integer-valued polynomial functions f : H → Z will be denoted by IntL(H,Z) (or by
Int(H,Z) for short). More generally for an arbitrary ring R we define IntL(H,R) := IntL(H,Z)⊗R.
An element f ∈ IntL(H,R) will be called an (R-valued) polynomial function on H and we use again
the symbolic notation f : H → R.

(b) An integer-valued polynomial function f : H → Z is said to be of bounded support if its support
is contained in a finite L-subset H ′ ⊆ H, i.e. if there exists finitely many elements h1, . . . , hm ∈ H
such that supp(f) = {h ∈ H | f(h) 6= 0} ⊆

⋃m
i=1 L + hi. The ring of integer-valued locally

polynomial functions H → Z with bounded support will be denoted by IntL,b(H,Z) (or simply by
Intb(H,Z)). For a ring R we put IntL,b(H,R) := IntL,b(H,Z)⊗R.

(c) The dual of IntL,b(H,R) will be denoted by

Dpol(H,R) = Dpol,L(H,R) = HomZ(IntL,b(H,Z), R) = HomR(IntL,b(H,R), R).

It is called the module of R-valued polynomial distributions on H.

Clearly for a sublattice L′ of L we have IntL(H,Z) ⊆ IntL′(H,Z) and IntL,b(H,Z) ⊆ IntL′,b(H,Z).
Also for an L-subset H ′ ⊆ H there exists canonical ring homomorphisms

IntL(H,Z) −→ IntL(H ′,Z), f 7→ f |H′ ”Restriction”,(18)

IntL(H ′,Z) −→ IntL(H,Z), f 7→ f! ”Extension by zero”(19)

that map IntL,b(H,Z) (resp. IntL,b(H
′,Z)) into IntL,b(H

′,Z) (resp. IntL,b(H,Z)).
10



Remarks 2.8. (a) Let ϕ : H1 → H2 be an L-equivariant map between L-sets. The map ϕ∗ :
Maps(H2,Z) → Maps(H1,Z), f 7→ f ◦ ϕ maps IntL(H2,Z) into IntL(H1,Z). Moreover if ϕ is
injective then ϕ∗ maps IntL,b(H2,Z) into IntL,b(H1,Z), i.e. it induces a homomorphism of L-algebras
ϕ∗ : Intb(H2, R)→ Intb(H1, R). We denote the dual map by

ϕ∗ : Dpol,L(H1, R) −→ Dpol,L(H2, R).

(b) In particular for an L-set H and λ ∈ L the map ϕ : H → H,h 7→ λ + h is L-equivariant. The
induced homomorphism of R-algebras τλ := ϕ∗ : Int(H,R) → Int(H,R) will be called translation
by λ. Similar to Lemma 2.2 (b) for every polynomial function f : H → R there exists finitely many
polynomial functions f1, . . . , fN : H → R and g1, . . . , gN : L→ R such that

(20) τλ(f) =
r∑
i=1

gi(λ)fi

for every λ ∈ L. Moreover if f has bounded support then f1, . . . , fN can be chosen to have bounded
support as well. The collection of translations τλ for λ ∈ L induce an R[L]-module structure on
Int(H,R). It will be denoted by ? : R[L]× Int(H,R)→ Int(H,R).

(c) By using property (20) for µ ∈ Dpol(L,R) and ν ∈ Dpol,L(H,R) one can define the convolution
µ ? ν ∈ Dpol,L(H,R) similar to (8) namely we have∫

H
f(h)d(µ ? ν)(h) =

∫
H

(∫
L
f(λ+ h)dµ(λ)

)
dν(h)

for every f ∈ IntL,b(H,R). Thus the convolution product defines on Dpol,L(H,R) a Dpol(L,R)-
module structure.

(d) Let H be an L-set and let H =
⋃
i∈I Hi be a covering by disjoint L-subsets. The family of

maps Intloc,b(Hi,Z)→ Intloc,b(H,Z), fi 7→ (fi)! induces an isomorphism

(21)
⊕
i∈I

IntL,b(Hi,Z) −→ IntL,b(H,Z).

For that it suffices to verify surjectivity. Let f ∈ IntL,b(H,Z) there exists a finite L-subset H ′ of
H such that supp(f) ⊆ H ′. Note that the set J := {i ∈ I | Hi ∩H ′ 6= ∅} is finite since H ′ has only
finitely many L-orbits. If we put fi := f |Hi for i ∈ I then we have fi = 0 except possibly for i ∈ J .
It follows that (fi)i∈I ∈

⊕
i∈I IntL,b(Hi,Z) is mapped to f under (21). �

Locally polynomial functions and distributions. In the following V denotes a Q-vector space
of dimension n (in Prop. 2.15 we assume moreover that V is oriented). Recall that Lat(V ) is the
set of all subgroups L ⊆ V that are free-abelian of rank n. Elements of Lat(V ) will be called
lattices. We fix a non-empty subset L of Lat(V ) such that we have

(22) L1 ∩ L2, L1 + L2 ∈ L for all L1, L2 ∈ L .

For such L we put

Λ = Λ(L ) :=
⋃
L∈L

L.

Note that Λ is a subgroup of V . For such data we consider the group

AutL (Λ) = {α ∈ GL(V ) | α(L), α−1(L) ∈ L ∀L ∈ L }.

The elements of AutL (Λ) map Λ onto itself, i.e. we have AutL (Λ) ⊆ GL(Λ). Let Γ be a subgroup
of GL(V ). The set L will be called Γ-stable if Γ ⊆ AutL (Λ).
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Examples 2.9. (a) Let F be a number field of degree n over Q with ring of integers OF . The
set of all fractional ideals I = LatOF (F ) of F is a closed F ∗-stable subset of Lat(F ) and we have
Λ = F . More generally, the set of fractional ideals IS of F that are coprime to a fixed finite set S of
nonarchimedean places of F is a closed subset of LatOF (F ). If OS = {x ∈ F | ordp(x) ≥ 0 ∀ p ∈ S}
is the semilocal subring of F associated to S then we have Λ(IS) = OS and IS is O∗S-stable.

(b) More generally let n = dm, let F be a number field of degree d over Q and let V be a m-
dimensional F -vector space. Let S as above be a finite set of nonarchimedean places of F and let
M be a finitely generated OS-submodule of V with rankOSM = m, i.e. we have M⊗OS F = V .
Then we consider the set L = L (M) of finitely generated OF -submodules L ⊆ M satisfying
L⊗OF OS =M. It is a closed GLOS (M)-stable subset of LatOF (V ) and we have Λ(L ) =M.

For later use we note that the set L (M) admits an adelic description (similar to the description
of IS as IS ∼= (ASf )∗/USf ). More precisely there is a canonical transitive action of the group

GLASf
(ASf ⊗OS V ) on L (M): given L ∈ L (M) and g ∈ GLASf

(ASf ⊗OS V ) we define g · L by

g · L = g(L ⊗OF ÔS) ∩M where ÔS :=
∏
v 6∈S,v-∞Ov (the intersection is taken within V ⊗F ASf ).

Note that the stabilizer of L ∈ L (M) is the group GLÔS (L̂S) where L̂S = L⊗OF ÔS . �

Let H be a (left) Λ-set, i.e. H is a set together with a Λ-action Λ×H → H, (λ, h) 7→ λ+ h. For
L ∈ L we say that a subset H ⊆ H is L-stable if λ+ x ∈ H for every x ∈ H and λ ∈ L. We put

Open(H) = OpenL (H) := {H ⊆ H | H is L-stable for some L ∈ L }.

An element H ∈ Open(H) will be called finite if H is L-stable and has only finitely many L-orbits
for some L ∈ L . The collection of finite elements of Open(H) will be denoted by Openfin(H). Also
for H ∈ Open(H) we let Openfin(H) be the collection of subsets H ′ ⊆ H with H ′ ∈ Openfin(H).

We are now in the position of defining R-valued locally polynomial functions and locally poly-
nomial distributions with respect to the family of lattices L .

Definition 2.10. Let H be a Λ-set and let H ∈ Open(H).

(a) A map f : H → Z will be called an integer-valued locally polynomial function (with respect to L )
if there exists L ∈ L such that H is L-stable and so that f ∈ IntL(H,Z). The ring of all integer-
valued locally polynomial functions H → Z with respect to L will be denoted by IntL –loc(H,Z)
or simply by Intloc(H,Z). For a ring R we define Intloc(H,R) := Intloc(H,Z) ⊗ R. Elements of
Intloc(H,R) will be called R-valued locally polynomial functions on H.

(b) An element f ∈ Intloc(H,Z) is called an integer-valued polynomial function with bounded support
if there exists a subset H ′ ⊆ H with H ′ ∈ Openfin(H) and supp(f) ⊆ H ′. The abelian group of
locally polynomial functions H → Z with bounded support will be denoted by IntL –loc,b(H,Z) =
Intloc,b(H,Z). For a ring R we define Intloc,b(H,R) := Intloc,b(H,Z)⊗R.

(c) The dual of Intloc,b(H,R) will be denoted by

Dlpol(H,R) = DL –lpol(H,R) = HomZ(Intloc,b(H,Z), R) = HomR(Intloc,b(H,R), R).

It is called the module of locally polynomial R-valued distributions on H with respect to L .

(d) An additive map µ : Intloc(H,Z)→ R will be called an R-valued locally polynomial distribution
on H with bounded support, if there exists a subset H ′ ⊆ H with H ′ ∈ Openfin(H) such that
µ(f) depends only on f |H′, i.e. there exists an additive map µ′ : Intloc(H

′,Z) → R such that
µ(f) = µ′(f |H′) for every f ∈ Intloc(H,Z). We denote by Dlpol,b(H,R) the module of R-valued
locally polynomial distributions on H with bounded support.
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Note that Intloc,b(H,R) is an ideal in Intloc(H,R) (that Intloc,b(H,R) ⊆ Intloc(H,R) follows from
the fact that Intloc(H,Z)/ Intloc,b(H,Z) is torsionfree). Let H ∈ Open(H) and assume that H is
L-stable for L ∈ L . If we put L (L) := {L′ ∈ L | L′ ⊆ L} and consider it as a partially ordered
set (ordered by inclusions) then we have

Intloc,b(H,Z) = lim
−→L′∈L (L)

IntL′,b(H,Z) and Intloc(H,Z) = lim
−→L′∈L (L)

IntL′(H,Z).

It follows that for a ring R we have

(23) Dlpol(H,R) = lim
←−L′∈L (L)opp

Dpol,L′(H,R).

Note that for an arbitrary coefficient ring R an element Intloc(H,R) defines again a function H → R.
For µ ∈ Dlpol(H,R) (resp. µ ∈ Dlpol,b(H,R)) we write

∫
H f(h)dµ(h) for the evaluation of µ at

f ∈ Intloc,b(H,R) (resp. at f ∈ Intloc(H,R)). More generally, for an R-Algebra A we have an
evaluation pairing that will be denoted again by

(24) Dlpol(H,R)× Intloc,b(H,A) −→ A, (µ, f) 7→
∫
H
f(h)dµ(h).

Let H ′, H ∈ Open(H) with H ′ ⊆ H. Again there exists canonical ring homomorphisms

Intloc(H,Z) −→ Intloc(H
′,Z), f 7→ f |H′ ”Restriction”,(25)

Intloc(H
′,Z) −→ Intloc(H,Z), f 7→ f! ”Extension by zero”(26)

that map Intloc,b(H,Z) (resp. Intloc,b(H
′,Z)) into Intloc,b(H

′,Z) (resp. Intloc,b(H,Z)). Dually, we
obtain maps

Dlpol(H
′, R) −→ Dlpol(H,R), µ 7→ µ! ”Extension by zero”(27)

Dlpol(H,R) −→ Dlpol(H
′, R), µ 7→ µ|L′ ”Restriction”(28)

i.e. (27) and (28) are characterized by∫
H
f(h) dµ!(h) =

∫
H′

(f |H′)(h′) dµ(h′),

∫
H′
g(h′) d(ν|H′)(λ′) =

∫
H
g!(h) dν(h)

for all µ ∈ Dlpol,L(H ′, R), f ∈ Intloc,b(H,R) and ν ∈ Dlpol,L(H,R), g ∈ Intloc,b(H
′, R). Moreover

note that (25) also induces a map

(29) Dlpol,b(H
′, R) −→ Dlpol,b(H,R), µ 7→ µ! ”Extension by zero”

Note that for H ∈ Open(H) we have

Intloc,b(H,Z) = lim
−→H′∈Openfin(H)

Intloc(H
′,Z)

where the transition maps in the limit are given by (26). It follows

(30) Dlpol(H,R) = lim
←−H′∈Openfin(H)opp

Dlpol(H
′, R).

Moreover, we note that for the R-module Dlpol,b(H,R) we have

Dlpol,b(H,R) = lim
−→H′∈Openfin(H)

Dlpol(H
′, R).

Here the transition map Dlpol(H
′
1, R)→ Dlpol(H

′
2, R) for H ′1 ⊆ H ′2 ⊆ H with H ′1, H

′
2 ∈ Openfin(H)

is the map (27).
Let H ∈ Open(H) and let H =

⋃
i∈I Hi be a covering of H by disjoint subsets of Open(H). The

family of maps Intloc,b(Hi,Z)→ Intloc,b(H,Z), fi 7→ (fi)! induces a homomorphism

(31)
⊕
i∈I

Intloc,b(Hi,Z) −→ Intloc,b(H,Z)
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and by passing to duals a homomorphism

(32) Dlpol(H,R) −→
∏
i∈I
Dlpol(Hi, R), µ 7→ (µ|Hi)i∈I

for any ring R.

Lemma 2.11. Let H ∈ Open(H) and let H =
⋃
i∈I Hi be a covering by disjoint subsets of Open(H).

If there exists L ∈ L such that Hi is L-stable for every i ∈ I then (31) and (32) are isomorphisms.

Proof. It suffices to prove the surjectivity of (31). For a given f ∈ Intloc,b(H,Z) we can choose
L ∈ L sufficiently small such that all Hi are L-stable and such that f ∈ IntL,b(H,Z). Now the
assertion follows from Remark 2.8 (d). �

Remark 2.12. Note that under the assumptions of the Lemma the collection of mapsDlpol,b(Hi, R)→
Dlpol,b(H,R), µ 7→ µ! for i ∈ I induces an isomorphism⊕

i∈I
Dlpol,b(Hi, R) −→ Dlpol,b(H,R).

To discuss further functorial properties of the above Definitions 2.10 we introduce the notion of
an L -affine map.

Definition 2.13. Let H1, H2 be Λ-sets. A map ϕ : H1 → H2 will be called an L -affine map if
there exists α ∈ AutL (Λ) such that ϕ(λ+ h) = α(λ) + ϕ(h) for every λ ∈ Λ and h ∈ H1.

Remark 2.14. Let H = Λ be equipped with the obvious structure as a Λ-set. An L -affine map
ϕ : Λ→ Λ is an automorphism composed with a translation. Thus every L -affine map ϕ : Λ→ Λ
is a bijection. Hence the L -affine maps ϕ : Λ → Λ form a group – denote by AffL (Λ) – and we
have AffL (Λ) = AutL (Λ) n Λ.

Let ϕ : H1 → H2 be an L -affine map between Λ-sets. Note that for H ∈ Open(H2) we have
ϕ−1(H) ∈ Open(H1) and that ϕ∗ : Maps(ϕ−1(H),Z) → Maps(H,Z), f 7→ f ◦ ϕ maps the subring
Intloc(ϕ

−1(H),Z) into Intloc(H,Z). Now assume that ϕ : H1 → H2 is injective. In this case
we have ϕ−1(H) ∈ Openfin(H1) for every H ∈ Openfin(H2). It follows that the homomorphism
ϕ∗ : Maps(ϕ−1(H),Z)→ Maps(H,Z) for H ∈ Open(H2) maps the subring Intloc,b(ϕ

−1(H),Z) into
Intloc,b(H,Z). By passing from ϕ∗ : Intloc,b(ϕ

−1(H),Z)→ Intloc,b(H,Z) to duals we obtain a map

(33) ϕ∗ : Dloc(H,R) −→ Dloc(ϕ
−1(H), R).

Now assume that H = Λ and let H = L ∈ L . Then Dlpol(L,R) carries a natural ring structure
given by the convolution (8) and the map

(34) Dlpol(L,R) −→ Dpol(L,R)

dual to the inclusion Int(L,R) ↪→ Intloc(L,R) is a ring homomorphism. Since the Dirac distri-
butions δλ, λ ∈ L lie in Dlpol(L,R) the map L → Dlpol(L,R), λ 7→ δλ extends to an R-algebra
homomorphism R[L]→ Dlpol(L,R) and (34) is a homomorphism of R[L]-algebras.

The R-module Dlpol(Λ, R) is equipped with a left action of the group AffL (Λ) defined by the
homomorphisms (33), i.e. it is equipped with a natural R[AffL (Λ)]-module structure. Similarly one
defines an R[AffL (Λ)]-module structure on Dlpol,b(Λ, R) so that the canonical map Dlpol,b(Λ, R)→
Dlpol(Λ, R) is AffL (Λ)-equivariant.

Now assume that V is oriented. This provides also each lattice L ⊂ V with the structure of an
oriented lattice so we can apply Corollary 2.6. The Aff(L)-action on ExtnR[L](R,Dlpol(L,R)) ∼= R

is not trivial but is given by the sign character, i.e. the homomorphism

(35) ε : Aff(V ) −→ {±1} = Z∗, (α, v) 7→ sign(det(α)).
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Thus Corollary 2.6 can be restated as

ExtiR[L](R,Dpol(L,R)(ε)) =

{
R if i = n,
0 if i 6= n

when taking into account the Aff(L)-actions. Similarly, we have

Proposition 2.15. For every i ≥ 0,

ExtiR[Λ](R,Dlpol(Λ, R)(ε)) =

{
R if i = n,
0 if i 6= n.

as R[AffL (Λ)]-modules.

For the proof we need the following obvious

Lemma 2.16. For a ring R and L′, L ∈ L with L′ ⊆ L the canonical map

Z[L]⊗Z[L′] Int(L′,Z) −→ IntL′(L,Z), α⊗ f 7→ α ? f!

and its dual

Dpol,L′(L,R) −→ HomR[L′](R[L],Dpol(L
′, R))

are isomorphisms.

Proof of Prop. 2.15. Firstly, note that by (30) we have

Dlpol(Λ, R) = lim
←−L∈L opp

Dlpol(L,R).

We fix a lattice L0 in L . The homomorphism of R[L0]-modules Dlpol(L0, R) → Dlpol(Λ, R) (see
(27)) induces a homomorphism of R[Λ]-modules

(36) Dlpol(Λ, R) −→ HomR[L0](R[Λ],Dlpol(L0, R)).

It is an isomorphism by Lemma 2.11. Indeed if R is a system of representatives for the L0-cosets
in Λ then the map (36) can be identified with the map (32) for the covering Λ =

⋃
λ∈R λ + L0.

Moreover by (23) and Lemma 2.16 we have

Dlpol(L0, R) = lim
←−L∈L (L0)opp

Dpol,L(L0, R) = lim
←−L∈L (L0)opp

HomR[L](R[L0],Dpol(L,R))

hence

Dlpol(Λ, R) ∼= HomR[L0](R[Λ], lim
←−L∈L (L0)opp

HomR[L](R[L0],Dpol,L(L,R)))(37)

∼= lim
←−L∈L opp

HomR[L](R[Λ],Dpol(L,R)).

By Cor. 2.6 and Shapiro’s Lemma we have

(38) ExtiR[Λ](R,HomR[L](R[Λ],Dpol(L,R))) = ExtiR[L](R,Dlpol(L,R)) =

{
R(ε) if i = n,

0 if i 6= n

for every i ≥ 0 and L ∈ L . On the other hand (37) and the first equality in (38) together with
([23], Thm. 3.5.8) imply that there exists a short exact sequence

0 −→ lim
←−

(1)

L∈L opp
Exti−1

R[L](R,Dlpol(L,R))(ε) −→ ExtiR[Λ](R,Dlpol(Λ, R)(ε))(39)

−→ lim
←−L∈L opp

ExtiR[L](R,Dlpol(L,R))(ε) −→ 0.

From the second equality in (38) we deduce that the first term in (39) vanishes for every i and the
third for every i except for i = n when it is ∼= R. �
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Change of L . We also need to investigate the effects of changing the subset L ⊆ Lat(V ) in
specific circumstances. For that let L1 and L2 be non-empty closed subsets of Lat(V ) and put
Λi := Λ(Li) for i = 1, 2. We assume that Λ2 ∩ L1 ∈ L2 for every L1 ∈ L1 and that

L1 −→ L2, L1 7→ Λ2 ∩ L1

is a bijection. This implies in particular that Λ1 ⊇ Λ2. We consider a Λ1-set H1 and a Λ2-subset
H2 ⊆ H1. Let H1 ∈ Open(H1) and let L1 ∈ L1 such that H1 is L1-stable. Then H2 := H1 ∩ H2

is L2 := L1 ∩ Λ1-stable. Moreover if f ∈ IntL1(H1,Z) (resp. f ∈ IntL1,b(H1,Z)) then f |H2 ∈
IntL2(H2,Z) (resp. f |H2 ∈ IntL2,b(H2,Z)).

It follows that the map

(40) IntL1 –loc(H1,Z) −→ IntL2 –loc(H2,Z), f 7→ f |H2

is well-defined for every H1 ∈ Open(H1) and H2 ∈ Open(H2) with H2 ⊆ H1. Moreover (40) maps
the subring IntL1 –loc,b(H1,Z) of IntL1 –loc(H1,Z) into IntL2 –loc,b(H2,Z). Thus, dually, we obtain
maps

DL2 –lpol,b(H2, R) −→ DL1 –lpol,b(H1, R), µ 7→ µ!(41)

DL2 –lpol(H2, R) −→ DL1 –lpol(H1, R), µ 7→ µ!(42)

that are characterized by ∫
H1

f(h1) dµ!(h1) =

∫
H2

(f |H2)(h2) dµ(h2)

for all µ ∈ DL2 –lpol,b(H2, R) (resp. µ ∈ DL2 –lpol(H2, R)) and f ∈ IntL1 –loc(H1,Z) (resp. f ∈
IntL1 –loc,b(H1,Z)). In particular for H1 = H1 and H2 = H2 we obtain maps

DL2 –lpol,b(H2, R) −→ DL1 –lpol,b(H1, R), µ 7→ µ!(43)

DL2 –lpol(H2, R) −→ DL1 –lpol(H1, R), µ 7→ µ!.(44)

Under certain conditions on L1, L2, H1, H2 and R these are isomorphisms.

Proposition 2.17. Assume that

(i) The index d := [L1 : Λ2 ∩ L1] is independent of the choice of L1 ∈ L1.

(ii) The action of Λi on Hi is faithful for i = 1, 2 and the map Λ2\H2 → Λ1\H1,Λ2 + h 7→ Λ1 + h
is bijective.

(iii) The index d = [Λ1 : Λ2] is invertible in R.

Then the maps (41) and (42) for H1 = H1 and H2 = H2 are isomorphisms.

Proof. Note that (i) implies d = [Λ1 : Λ2]. By Lemma 2.11 and Remark 2.12 it suffices to consider
the case when Λ2 acts freely and transitively on H2 (hence Λ1 acts freely and transitively on H1 as
well by (ii)). Thus we may assume Hi = Λi for i = 1, 2.

We fix L1 ∈ L1 and put L2 = L1 ∩ Λ2. As remarked in the proof of Prop. 2.15 we have

DLi –lpol(Λi, R) ∼= HomR[Li](R[Λi],DLi –lpol(Li, R))

for i = 1, 2. Similarly, using Remark 2.12 one can show that

DLi –lpol,b(Λi, R) ∼= R[Λi]⊗R[Li] DLi –lpol(Li, R).

Thus it suffices to show that the map (41) for H1 = L1, H2 = L2, i.e. the map

DL2 –lpol(L2, R) −→ DL1 –lpol(L1, R), µ 7→ µ!

is an isomorphism.
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Firstly, note that (iii) and Lemma 2.2 (a) imply that Dpol(L2, R) → Dpol(L1, R), µ 7→ µ! is an
isomorphism. Note also that the map L1(L1) → L2(L2), L′1 7→ L2 ∩ L′1 is a bijection. Moreover
note that we have by (23) we have

DLi –lpol(Li, R) = lim
←−L′i∈L (Li)opp

Dpol,L′i
(Li, R)

for i = 1, 2. Thus if we fix L′1 ∈ L1(L1) and put L′2 := L2 ∩ L′1 then it suffices to show that the
canonical map

(45) Dpol,L′2
(L2, R) −→ Dpol,L′1

(L1, R)

is an isomorphism. From (i) we deduce that R[L2]⊗R[L′2] R[L′1] ∼= R[L1]. Since – again by Lemma

2.2 (a) – the map Dpol(L
′
2, R)→ Dpol(L

′
1, R), µ 7→ µ! is bijective, it induces an isomorphism

HomR[L′2](R[L2],Dpol(L
′
2, R))

∼=−→ HomR[L′2](R[L2],Dpol(L
′
1, R))(46)

∼= HomR[L′1](R[L2]⊗R[L′2] R[L′1],Dpol(L
′
1, R))

∼= HomR[L′1](R[L1],Dpol(L
′
1, R))

According to Lemma 2.16 it can be identified with (45). �

We apply Prop. 2.17 in the following situation. As in Example 2.9 (b) let F be a number field
of degree d over Q, V a m-dimensional F -vector space, S a finite set of nonarchimedean places
of F and M ⊆ V a finitely generated OS-submodule of V with rankOSM = dimF (V ). Let
L ⊆ LatOF (V ) be the set of L ∈ LatOF (V ) with L ⊆ M and L ⊗OF OS = M, i.e. L generates
M as an OS-module.

Corollary 2.18. Let v ∈ V and let h be the order of v+M in V/M, i.e. h is the minimal positive
integer such that hv ∈M. If h is invertible in R then there exists natural isomorphisms

DL –lpol,b(v +M, R) ∼= DL –lpol,b(M, R), DL –lpol(v +M, R) ∼= DL –lpol(M, R)

Proof. Let M′ ⊆ V be another finitely generated OS-submodule of V with M′ ⊇ M and put
L ′ = {L′ ∈ LatOF (V ) | L′ ⊆M′, L′⊗OF OS =M′}. We remark that the map L ′ −→ L , L′ 7→
L′∩M is a bijection and that L′/L→M′/M, λ+L 7→ λ+M′ is an isomorphism for every L′ ∈ L ′

and L := L′ ∩M (these facts can be easily seen using the adelic descriptions of the sets L ′ and
L given in 2.9 (b)). If we choose M′ := 1

hM := {w ∈ V | hw ∈ M} then we see that conditions
(i) and (ii) of Prop. 2.17 hold for L1 = L ′, L2 := L , H1 =M′ and H2 := v +M. Moreover the
index [M′ :M] is a divisor of hn with n = dm hence is invertible in R so (iii) holds as well. Thus
we can apply 2.17 and obtain

DL –lpol,b(v +M, R) ∼= DL ′ –lpol,b(M′, R), DL –lpol(v +M, R) ∼= DL ′ –lpol(M′, R).

Since v ∈ 1
hM was arbitrary the assertion follows. �

Remark 2.19. Note that the only possible prime divisors of h are the primes numbers lying below
the places in S.

3. Lattice topology, sheaves and cohomology

(L , Γ̃)–spaces and lattice topology. As in section 2 we fix a finite-dimensional Q-vector space
V and a non-empty subset L ⊆ Lat(V ) with the property (22). Recall that Λ = Λ(L ) =

⋃
L∈L L

is a subgroup of V . We also fix a subgroup Γ ⊆ GL(V ) such that L is Γ-stable and put Γ̃ :=

Γ n Λ ⊆ AffZ(Λ). Elements of Γ̃ will be denoted by γ̃ = (γ, λ) where γ ∈ Γ and λ ∈ Λ.

We associate to this data the following category C(L , Γ̃). Its set of objects is L . For L1,

L2 ∈ L a morphism ϕ : L1 → L2 is a triple ϕ = (γ̃, L1, L2) ∈ Γ̃ × L × L with γ(L1) ⊆ L2
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if γ̃ = (γ, λ). The composition of two morphisms ϕ1 = (γ̃1, L1, L2) and ϕ2 = (γ̃2, L2, L3) is the
morphism ϕ2 ◦ ϕ1 := (γ̃2 · γ̃1, L1, L3). Given a morphism ϕ = (γ̃, L1, L2) with γ̃ = (γ, λ) we define
its degree by

deg(ϕ) := [L2 : γ(L1)].

The degree is multiplicative, i.e. we have deg(ϕ2 ◦ ϕ1) = deg(ϕ2) · deg(ϕ1) for two morphism

ϕ1 : L1 → L2 and ϕ : L2 → L3 in C(L , Γ̃). Morphisms of the form ϕ = (1, L1, L2) (i.e. when the
first component of ϕ is the neutral element in Γ) will be denoted by

(47) π = πL1,L2 : L1 ↪→ L2.

For these morphisms we have deg(πL1,L2) = [L2 : L1]. For L ∈ L and γ̃ = (γ, λ) ∈ Γ̃ we denote
the morphism (γ̃, L, γ(L)) by

(48) γ̃∗ : L −→ γ(L).

Consider the special case when γ = 1, i.e. when γ̃ = (1, λ). Then the morphism (48) will be denoted
by

λ∗ : L −→ L.

We note that an arbitrary morphism ϕ = (γ̃, L1, L2) with γ̃ = (γ, λ) ∈ Γ̃ can be factored as a
composition of morphisms of the type (47) and (48). Indeed, we have

ϕ = γ̃∗ ◦ πL1,γ−1(L2) = πγ(L1),L2
◦ γ̃∗.

We consider a functor X : C(L , Γ̃) → Top. For L ∈ L we will write XL instead of X(L). The
image of a morphism ϕ : L1 −→ L2 under X will be denote by ϕ : XL1 → XL2 as well. In particular

for L,L1, L2 ∈ L with L1 ⊆ L2 and γ̃ = (γ, λ) ∈ Γ̃ we obtain morphisms

π = πL1,L2 : XL1 −→ XL2 and γ̃∗ : XL −→ Xγ(L).

Definition 3.1. (a) A functor X : C(L , Γ̃) → Top will be called a (L , Γ̃)-space if the map

ϕ : XL1 → XL2 is a covering of degree deg(ϕ) for every morphism ϕ : L1 → L2 in C(L , Γ̃).

(b) A (L ,Γ)-space is a (L , Γ̃)-space such that the map XL → XL induced by the morphism
λ∗ : L→ L is the identity for every L ∈ L and λ ∈ Λ.

(c) A morphism of (L , Γ̃)-spaces f : X → Y is a morphism of functors such that for every

morphism ϕ : L1 → L2 in C(L , Γ̃) the diagram

XL1

fL1−−−−→ YL1yϕ yϕ
XL2

fL2−−−−→ YL2

is cartesian. The set of morphisms X → Y will be denoted by Hom
Γ̃
(X,Y ).

For a (L , Γ̃)-space X we are going to associate a certain site which allows us to consider Γ̃-
equivariant sheaf on X. For that we put

X̂ := lim
←−L∈L

XL

i.e. as a set X̂ is the projective limit of the inverse system consisting of the sets XL for L ∈ L
and the maps πL1,L2 for L1, L2 ∈ L with L1 ⊆ L2. For L ∈ L we let πL : X̂ → XL denote the

canonical projection. A subset S ⊆ X̂ will be called L-stable if it is of the form S = π−1
L (S′) for a

subset S′ ∈ XL. The set X̂ is equipped with a natural Γ̃-action induced by the collection of maps
18



{γ̃∗ : XL → Xγ(L)}L∈L ,γ̃∈Γ̃
. Indeed, given γ̃ = (γ, λ) ∈ Γ̃ we define the map γ̃· : X̂ → X̂, x 7→ γ̃ · x

by

(49) γ̃· := lim
←−L

(γ̃, L, γ(L)) : X̂ = lim
←−L∈L

XL −→ lim
←−L∈L

Xγ(L) = X̂.

Rather than equipping X̂ with the projective limit topology we consider a much coarser notion of

open sets and coverings on X̂. Namely, a subset U of X̂ will be called open if and only if there
exists L ∈ L and an open subset W of XL with U = π−1

L (W ). Equivalently, U is open if and only

if it is L-stable for some L ∈ L and if πL(U) is open in XL. We let Open(X̂) be the collection of

all open subsets of X̂. For an open set U of X̂, a family of open subsets {Ui}i∈I of U will be called
a covering of U if {Ui}i∈I is a covering in the naive sense (i.e. we have U =

⋃
i∈I Ui) and if there

exists L ∈ L such that every Ui is L-stable. Equivalently, there exists an open subset W of XL

and an open covering {Wi}i∈I of W such that U = π−1
L (W ) and Ui = π−1

L (Wi) for all i ∈ I. The
collection of all coverings of U will be denoted by Cov(U).

Lemma 3.2. The triple (X̂,Open(X),Cov) is a site (in the sense of Def. A.1 (b) of the appendix).

Proof. One easily checks that for open subsets U, V ⊆ X̂ both U ∪ V and U ∩ V are open and that
for {Ui}i∈I ∈ Cov(U) we have {Ui ∩ V }i∈I ∈ Cov(U ∩ V ). �

We refer to X̂ = (X̂,Open(X),Cov) as the adelic space associated to X and say that X̂ is

equipped with the lattice topology. Note that the map πL : X̂ → XL is continuous as a morphisms
between sites for every L ∈ L (in the sense of Def. A.1 (c)) and that we have chosen Open(X) as
well as Cov to be minimal with this property. Note also that the map (49) is continuous for every

γ̃ ∈ Γ̃. Thus X̂ is equipped with a continuous Γ̃-action. Moreover if X is a (L ,Γ)-space then the

Λ-action on X̂ is trivial so that X̂ is just equipped with a Γ-action.

Remarks 3.3. (a) We remark that in general the lattice topology is not a topology in the usual

sense, i.e. the site (X̂,Open(X),Cov) is not a topological space. In fact although the union of a

finite collection of open subsets of X̂ is open as well, this does not hold for the union of an arbitrary

collection of open subsets. Moreover (X̂,Open(X),Cov) is in general not a site in the sense of ([22],
Tag 00VH). Indeed, albeit conditions (3) and (4) of ([8], Def. 2.4.1) hold, condition (5) usually does

not. Namely, if an open subset U ⊆ X̂ together with {Ui}i∈I ∈ Cov(U) and {Uij}j∈Ji ∈ Cov(Ui)
for each i ∈ I are given, then the collection of subsets {Uij ; i ∈ I, j ∈ Ji} of U is in general not a
covering.

(b) We note that a morphism f : X → Y of (L , Γ̃)-spaces induces a Γ̃-equivariant continuous
morphism

f̂ := lim
←−L∈L

fL : X̂ −→ Ŷ .

The obvious way to produce examples of (L , Γ̃)-spaces is as follows. Let X be a locally compact

Hausdorff space equipped with a free and continuous left Γ̃-action (i.e. every γ̃ ∈ Γ̃ acts as a

homeomorphism on X ). We denote the action of the subgroup Λ ⊆ Γ̃ on X additively. Assume

that every L ∈ L – viewed as a subgroup of Λ ⊆ Γ̃ – acts properly discontinuously on X . For
L ∈ L we let XL = {L + x | x ∈ X} be the set of L-orbits in X equipped with the quotient

topology. For a morphism ϕ = (γ̃, L1, L2) in C(L , Γ̃) with γ̃ = (γ, λ) ∈ Γ̃ we consider the induced
map ϕ∗ : XL1 → XL2 , x+L1 7→ γ̃ ·x+L2. It is easy to see that the assignment L 7→ XL, ϕ 7→ ϕ∗
is a (L , Γ̃)-space X. Also any Γ̃-equivariant continuous map f : X → Y between locally compact

Hausdorff space with such Γ̃-actions induces a morphism of the associated (L , Γ̃)-spaces.
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In this example the site (X̂,Open(X),Cov) admits a rather simple description. Namely the set
Open(X) can be identified with the collection of open subsets U ⊆ X that are stable under the
action of some L ∈ L (i.e. we have L+U = U). Moreover the coverings of the site can be identified
with open coverings U =

⋃
i Ui in the usual sense such that there exists L ∈ L so that every Ui is

L-stable.
In principle all the specific examples of (L , Γ̃)-spaces considered below and that are relevant

to us arise in this way. However in the construction of the adelic Eisenstein classes in section 4

we have to consider certain morphism between (L , Γ̃)-spaces that do not stem from Γ̃-equivariant
continuous maps f : X → Y as discussed above. Also we will later consider the notion of stalks for

a sheaf on the site X̂ at truly adelic points. For these reasons it is not sufficient to work entirely

within the realm of spaces X with a Γ̃-action as described above. Our construction of Eisenstein
classes is of a genuine adelic nature.

Examples 3.4. (a) We consider the above example for X = Λ equipped with the discrete topology

and the obvious Γ̃-action. Thus for L ∈ L we consider the quotient BL := Λ/L as a discrete space

and for a morphism ϕ = ϕγ̃,L1,L2
: L1 → L2 in C(L , Γ̃) we consider the map

ϕ = ϕγ̃,L1,L2
: BL1 = Λ/L1 −→ BL2 = Λ/L2, λ+ L1 7→ γ̃(λ) + L2.

This is the simplest example of a (L , Γ̃)-space. It will be denoted by B = BL and will be called

the basic (L , Γ̃)-space. Note that we have

(50) B̂ = lim
←−L∈L

Λ/L =: Λ̂.

We describe the lattice topology on Λ̂. For L ∈ L define L̂ = L̂L := ker(πL : B̂ = Λ̂→ BL = Λ/L)
so that

L̂ := lim
←−L′∈L ,L′⊆L

L/L′.

A subset U ⊆ Λ̂ is open if and only if there exists L ∈ L such that U is a union of L̂-cosets.

Equivalently, U is open if it is L̂-stable for some L ∈ L , i.e. we have x + U = U for all x ∈ L̂.

A covering of an open subset U ⊆ Λ̂ consists of a covering
⋃
i∈I Ui = U , so that there exists

L ∈ L such that Ui is L̂-stable for all i ∈ I. Note that since Λ/L ∼= Λ̂/L̂, an L̂-stable subset

of Λ̂ is necessarily of the form U + L̂ =
⋃
λ∈U λ + L̂ for a unique L-stable subset U ⊆ Λ (namely

U = U ∩ Λ). Thus the map

Open(B) −→ {U ⊆ Λ | U is L-stable for some L ∈ L }, U 7→ U ∩ Λ

is bijective.

(b) If X is (L , Γ̃)-space and Y a topological space equipped with a Γ-action then we denote

by X × Y the following (L , Γ̃)-space. For L ∈ L we put (X × Y )L := XL × Y . Also for

a morphism ϕ = ϕγ̃,L1,L2
: L1 → L2 in C(L , Γ̃) with γ̃ = (γ, λ) we define the induced map

ϕ : (X × Y )L1 → (X × Y )L2 by

ϕ : XL1 × Y −→ XL2 × Y, (x, y) 7→ (ϕ(x), γ · y).

Note that the projection onto the first factor prX : X × Y → X is a morphism of (L , Γ̃)-spaces.
Also if Y1 and Y2 are topological spaces equipped with a Γ-action and if f : Y1 → Y2 is a continuous

Γ-equivariant map then id×f : X × Y1 → X × Y2 is a morphism of (L , Γ̃)-spaces.
For example if we equip ΛR = VR with usual topology and the obvious Γ-action then the product

(51) A = AL := B × VR : C(L , Γ̃) −→ Top, L 7→ AL = BL × VR = Λ/L× VR
20



is a (L , Γ̃)-space and ξ : B ∼= B × {0} ↪→ B × VR = A and prB : A = B × VR → B are morphisms

of (L , Γ̃)-spaces. We call A the adelic (L , Γ̃)-space. We have

Â = Λ̂× VR
Note that the morphism p̂rB : Â → B̂ induced by the projection prB : A → B is given by

Λ̂× VR → Λ̂, (λ, v) 7→ λ.

(c) In example (51) each space AL = BL × VR is equipped with a natural Λ-action given by

(v+L, v∞) +λ := (v+λ+L, v∞+λ) for (v+L, v∞) ∈ BL×VR and λ ∈ Λ. We define the (L , Γ̃)-
space T as T = A/Λ. More precisely for L ∈ L we let TL := AL/Λ ∼= VR/L and let prL : AL → TL
be the quotient map. Note that each is an n-dimensional real torus. It is clear that a morphism

ϕ : L1 → L2 in C(L , Γ̃) induces a canonical map ϕ : TL1 → TL2 such that the diagram

BL1 × VR
prL1−−−−→ TL1yϕ yϕ

BL2 × VR
prL2−−−−→ TL2

commutes. Thus

(52) T = TL : C(L , Γ̃) −→ Top, L 7→ TL, (ϕ : L1 → L2) 7→ (ϕ : TL1 → TL2)

is a (L , Γ̃)-space. It is in fact a (L ,Γ)-space, called the torus (L ,Γ)-space. Note that each

TL ∼= VR/L is an n-dimensional real torus. For T̂ we get

T̂ =
(

Λ̂× VR
)
/Λ.

The collection of maps prL : AL → TL, L ∈ L is a morphism of (L ,Γ)-spaces pr : A → T . The

induced morphism Â→ T̂ is the map

(53) pr : Λ̂× VR −→
(

Λ̂× VR
)
/Λ, x 7→ x+ Λ.

It is easy to see that the lattice topology on T̂ can also be defined as the quotient topology of the

lattice topology on Â with respect to (53). More precisely a subset U ⊆ T̂ is open if and only if

pr−1(U) is open in Â and a family of subsets {Ui}i∈I of an open subset U ⊆ T̂ is a covering if and
only if {pr−1(Ui)}i∈I is a covering of pr−1(U).

Consider the composition of morphisms

(54) ι := pr ◦ξ : B −→ T

It has the following concrete description. For L ∈ L we identify TL with VR/L. Then the map
ιL : Λ/L −→ VR/L is induced by the inclusion Λ ↪→ VR.

(d) Consider the case of Example 2.9 (a) above, i.e. where V = F is a number field and L = IS ⊆
Lat(F ) is the set of fractional ideals in F that are coprime to a finite set of nonarchimedan places

S of F and Γ̃ = O∗S nOS = Aff(OS). For a ∈ IS we have

Ba = OS/a, Aa = (B × F∞)a = OS/a× F∞ and Ta = F∞/a

where F∞ := F ⊗ R. It will be useful to have adelic descriptions of B, A and T . Recall that
ASf =

∏′
v 6∈S,v-∞ Fv (resp. AS =

∏′
v 6∈S Fv) are the finite prime-to-S (resp. the prime-to-S) adeles of

F . By the strong approximation theorem we have

(55) Ba = ASf /âS , Aa = AS/âS and Ta = AS/(OS + âS)

where âS := (
∏
v 6∈S,v-∞Ov) a ⊆ ASf .
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Using (55) we obtain

B̂ = lim
←−a∈IS

OS/a = lim
←−a∈IS

ASf /âS = ASf .

Note that for a ∈ IS we have

âI
S

:= lim
←−a′∈IS a′⊆a

a/a′ = âS .

Thus a subset U ⊆ ASf is open if and only if there exists a ∈ IS such that U is a union of âS-cosets.

For Â and T̂ we get

(56) Â = AS and T̂ = AS/OS
and pr : Â→ T̂ (resp. prB : Â→ B̂) is the natural projection AS → AS/OS (resp. AS → ASf ). We

also remark that under the identifications (55), (56) the map πa : T̂ → Ta is given by the projection

πa : AS/OS −→ AS/(OS + âS).

Note that the lattice topology on B̂, Â and T̂ are coarser than the usual topologies on ASf , AS and

AS/OS respectively. For example a subset U ⊆ AS is open in the lattice topology if and only if it
is open in AS with respect to the usual topology and if it is âS-stable for some a ∈ IS .

(e) More generally we consider the framework of Example 2.9 (b), i.e. we have n = dm, F/Q
is an extension of degree m, V is a d-dimensional F -vector space, M is a finitely generated OS-
submodule of V withM⊗OSF = V and L = L (M) is the set of finitely generated OF -submodules

L of M satisfying L ⊗OF OS = M. In this case the associated (L , Γ̃)-spaces B, A and T (for

Γ̃ = AffOS (M)) admit the adelic descriptions

BL = (M⊗OS ASf )/L̂S , AL = (M⊗OS AS)/L̂S and TL = (M⊗OS AS)/(M+ L̂S)

for every L ∈ L (where L̂S is the closure of L in ASf , i.e. L̂S = (
∏
v 6∈S,v-∞Ov)L). Moreover we have

B̂ = V ⊗F ASf , Â = V ⊗F AS and T̂ = (V ⊗F AS)/M.

Again pr : V ⊗F AS → (V ⊗F AS)/M and prB : V ⊗F AS → V ⊗F ASf are the natural projections.

Sheaves on (L , Γ̃)-spaces. Let R be a ring and let X be a (L , Γ̃)-space. We denote the category

of R-sheaves on the site X = (X̂,Open(X),Cov) by Sh(X,R). The objects of Sh(X,R) will be
called a R-sheaves on X. The notion of an R-presheaf on X is defined similarly. By Prop. A.3 the
category Sh(X,R) is R-linear, abelian and has enough injectives. Also for L ∈ L there is a pair
of adjoint functors π∗L : Sh(XL, R) → Sh(X,R) and (πL)∗ : Sh(X,R) → Sh(XL, R) associated to
the projection πL : X → XL. We will denote the second by

(57) Sh(X,R) −→ Sh(XL, R), F 7→ FL.

Recall that for F ∈ Sh(X,R) the sheaf FL is given by FL(W ) := F ((πL)−1(W )) for every open
subset W ⊆ XL. Note that for L1, L2 ∈ L with L1 ⊆ L2 we have FL2

∼= (πL1,L2)∗FL1 .

More generally if Γ̃′ ⊆ Γ̃ is a subgroup then we define a Γ̃′-equivariant R-sheaf F on X to be a

Γ̃′-equivariant R-sheaf on X̂ (see Def. A.8). The category of Γ̃′-equivariant R-sheaves on X will be

denoted by Sh(X, Γ̃′, R).
We note that a sheaves on X can be completely described in terms of collections of sheaves FL

on XL for L ∈ L together with the collections of isomorphisms FL2
∼= (πL1,L2)∗FL1 for every pair

L1 ⊆ L2 in L . More precisely let Sh′(X,R) denote the category whose objects

F ′ = {F ′L, ρL1,L2 ;L,L1, L2 ∈ L , L1 ⊆ L2}
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consists of a collection of sheaves F ′L ∈ Sh(XL, R) for L ∈ L together with a collection of isomor-
phisms ρL1,L2 : FL2 → (πL1,L2)∗FL1 that satisfy the cocycle condition

(πL2,L3)∗ (ρL1,L2) ◦ ρL2,L3 = ρL1,L3

for every triple of lattices L1 ⊆ L2 ⊆ L3 in L . A morphism α : F ′ → G ′ in Sh′(X,R) between two
objects F ′ = {F ′L}L∈L and G ′ = {G ′L}L∈L consists of a collection of morphisms αL : F ′L → G ′L
in Sh(XL, R) for every L ∈ L that are compatible with the isomorphisms ρL1,L2 in the obvious
sense. We have the obvious

Lemma 3.5. The functor

Sh(X,R) −→ Sh′(X,R), F 7→ {FL}L∈Lat

is an equivalence of categories.

As a first application we obtain

Proposition 3.6. The functor (57) is exact and preserves injectives. In fact a sequence of R-
sheaves F1 −→ F2 −→ F3 on X is exact if and only if the sequence F1,L −→ F2,L −→ F3,L of
R-sheaves on XL is exact for every L ∈ L .

Proof. This can be easily deduced from the exactness of the functor (πL1,L2)∗ : Sh(XL1 , R) →
Sh(XL2 , R) for every pair of lattices L1 ⊆ L2 in L . �

Let f : X → Y be a morphism of (L , Γ̃)-spaces. As mentioned before f induces a Γ̃-equivariant

continuous morphism of sites f̂ : X̂ → Ŷ . We will denoted the functor f̂∗ and its left adjoint f̂∗

(see (166) and (167)) by

f∗ : Sh(X,R) −→ Sh(Y,R) and f∗ : Sh(Y,R) −→ Sh(X,R).

Thus f∗ is given f∗(F )(V ) = F (f̂−1(V )) for every open subset V ⊆ Ŷ .

Proposition 3.7. The functor f∗ : Sh(Y,R) → Sh(X,R) is exact. Moreover for G ∈ Sh(Y,R)
and L ∈ L we have

(58) f∗(G )L = (fL)∗(GL).

Also for the right derived functors of f∗ we have

(59) (Rif∗(F ))L = (RifL)∗(FL)

for every i ≥ 0 and F ∈ Sh(X,R).

Proof. The first assertion and (58) can be seen by interpreting the functor f∗ in terms of the
categories Sh′(X,R) and Sh′(Y,R) (compare Lemma 3.5). Namely, by the definitions we have
(f∗(F ))L = (fL)∗(FL) for every L ∈ L and F ∈ Sh(X,R). Thus the functor f∗ : Sh(X,R) →
Sh(Y,R) corresponds under the equivalences Sh(X,R) ' Sh′(X,R), Sh(Y,R) ' Sh′(Y,R) to

(60) f∗ : Sh′(X,R) −→ Sh′(Y,R), {F ′L, ρL1,L2} 7→ {(fL)∗(F
′
L), (fL2)∗(ρL1,L2)}

Since the maps πL1,L2 are coverings we have (πL1,L2)∗ ◦ (fL1)∗ ∼= (fL2)∗ ◦ (πL1,L2)∗ for every pair
L1 ⊆ L2 in L . From this it follows easily that the functor

f∗ : Sh′(Y,R) −→ Sh′(X,R), {G ′L, ρL1,L2} 7→ {(fL)∗(G ′L), (fL2)∗(ρL1,L2)}

is well-defined, exact and left adjoint to (60).
For (59) note that πL◦f = fL◦πL hence (πL)∗◦Rif∗ = Ri(πL◦f)∗ = Ri(fL◦πL)∗ = Ri(fL)∗◦(πL)∗

by Prop. 3.6. �
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Example 3.8. Let pr : A → T be the natural morphism between the (L , Γ̃)-spaces defined in
Examples 3.4 (b), (c), i.e. we have prL : AL = Λ/L × VR → TL = (Λ/L× VR) /Λ ≈ VR/L is the

natural projection for every L ∈ L with Λ =
⋃
L∈L L. Since the lattice topology on T̂ can also be

defined as the quotient topology of the lattice topology on Â with respect to (53) we see that the
functor

Sh(T,R) −→ Sh(A,Λ, R), F 7→ pr∗(F )

is an equivalence of categories.

Definition 3.9. A (L , Γ̃)-space X will be called discrete if XL is a discrete topological space for
every L ∈ L .

In the case of a discrete (L , Γ̃)-space it is easy to characterize when an R-presheaf F on X is a
sheaf.

Lemma 3.10. Let X be a discrete (L , Γ̃)-space and let F be an R-presheaf F on X̂.

(a) F is a sheaf if and only if the map

F (U)
s 7→(s|Ui )i∈I−−−−−−−→

∏
i∈I F(Ui)

is an isomorphism for every L ∈ L , every L-stable subset U ⊆ X̂ and every covering U =
⋃
i∈I Ui

of U by disjoint L-stable subsets.

(b) Assume that F is a sheaf and let U1 ⊆ U2 ⊆ X̂ be open subsets. Then the restriction resU2,U1 :
F (U2)→ F (U1) has a canonical section

ιU1,U2 : F (U1) −→ F (U2)

i.e. we have resU2,U1 ◦ιU1,U2 = idF (U1).

Proof. (b) Since X is discrete the complement U2 \U1 is again open and U2 = U1 ∪ (U2 \U1) is an
open covering. Hence

F (U2)
s 7→(s|U1

,s|U2\U1
)

−−−−−−−−−−−→ F (U1)⊕F (U2 \ U1)

is an isomorphism. �

Stalks. Let X be a (L , Γ̃)-space and let F be an R-sheaf on X. For a point x ∈ X̂ we introduce
two types of R-modules Fx and F x which may be viewed both as certain kind of stalk of F in x.
For L ∈ L put xL := πL(x). Firstly, we consider the case when X is discrete. Then for L1, L2 ∈ L

with L1 ⊆ L2 the fibers π−1
L1

(xL1) ⊆ π−1
L2

(xL2) are open subsets of X̂ containing x. By part (b) of
the Lemma the restriction map

(61) px,L2,L1 := resπ−1
L2

(xL2
),π−1

L1
(xL1

) : F (π−1
L2

(xL2)) −→ F (π−1
L1

(xL1)), s 7→ s|π−1
L1

(xL1
)

has a canonical section

(62) ιx,L1,L2 : F (π−1
L1

(xL1)) −→ F (π−1
L2

(xL2)).

The collection of R-modules {F (π−1
L (xL))}L∈L together with the maps (62) form a direct system

of R-modules over the ordered set L = (L ,⊆) so we can consider the direct limit

Fx := lim
−→L∈L

F (π−1
L (xL)).

Similarly the collection of R-modules {F (π−1
L (xL))}L∈L together with the maps (61) form an

inverse system over L opp and we can define

F x := lim
←−L∈L opp

F (π−1
L (xL)).
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For an arbitrary (L , Γ̃)-space X we define Fx and F x by first pulling F back to the associated

discrete (L , Γ̃)-space Xdisc (i.e. (Xdisc)L is the set XL equipped with the discrete topology for every
L ∈ L ). More precisely we define

Definition 3.11. Let F be an R-sheaf on a (L , Γ̃)-space X. For a point x ∈ X̂ we define the
R-modules Fx and F x by

(63) Fx := ι∗(F )x and F x := ι∗(F )x

where ι : Xdisc → X is the identical map viewed as a morphism of (L , Γ̃)-spaces. We call F x the
upper and Fx the lower stalk of F at x.

Example 3.12. Let B be a discrete (L , Γ̃)-space defined in Example 3.4 (a) and let F be an

R-sheaf on B. We consider the upper stalk of F at 0 ∈ B̂ = Λ̂. For that put 0L := πL(0) = L ∈
Λ/L = BL so that π−1

L (0L) = L̂ for every L ∈ L . Note that we have B̂ =
⋃
L∈L π−1

L (0L). Moreover

for a fixed lattice L0 ∈ L every element of the family U = {π−1
L (0L)}L∈L ,L⊇L0 is L̂0-stable hence

U is an open covering of B̂. Since {L ∈ L | L ⊇ L0}opp is a filtered partially ordered set the sheaf
property implies the last equality in

F 0 = lim
←−L∈L opp

F (π−1
L (xL)) = lim

←−{L∈L |L⊇L0}opp
F (π−1

L (0L)) = F (B̂).

Remarks 3.13. (a) If F is a Γ̃-equivariant sheaf then the Γ̃-actions on F and X̂ induce canonical
homomorphisms

γ̃ : Fx −→ Fγ̃−1(x), γ̃ : F x −→ F γ̃−1(x).

for every γ̃ ∈ Γ̃. In particular if x is a Γ̃ fixed-point then Fx and F x are R[Γ̃]-modules. A similar
remark holds for Γ-equivariant sheaves.

(b) One could also consider the stalk of F ∈ Sh(X,R) at x ∈ X̂ defined in the usual sense, namely

as the direct limit lim
−→U∈Ux

F (U) where Ux consists of all open subsets of X̂ that contain x and

where the transition maps are the restrictions. The above two R-modules (63) differ in general
from this ”naive” stalk. For that assume that X is discrete so that the fibers {π−1

L (xL)}L∈L form

a cofinal subset of Ux. Thus we have lim
−→U∈Ux

F (U) = lim
−→L∈L opp

F (π−1
L (xL)) where the transition

maps are the maps (61).

Lemma 3.14. Let X be a (L , Γ̃)-space and let F be an R-sheaf on X. Let x ∈ X̂ and put
xL = πL(x) for L ∈ L . Then we have

(64) Fx = lim
−→L∈L

(FL)xL and F x = lim
←−L∈L opp

(FL)xL .

Proof. Assume first that X is discrete. Then the R-module F (π−1
L (xL)) = FL({xL}) is equal to

stalk of the sheaf FL on XL at the point xL for every L ∈ L (since XL is discrete). Therefore
(64) holds in this case. If X is not discrete then by applying (58) to the morphism ι : Xdisc → X
we obtain

Fx = ι∗(F )x = lim
−→L∈L

(ι∗(F )L)xL = lim
−→L∈L

(ιL)∗(FL)xL = lim
−→L∈L

(FL)xL

The proof of the second equality in (64) is analogous. �

An immediate consequence of Prop. 3.7 and Lemma. 3.14 is
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Proposition 3.15. Let f : X → Y be a morphism of (L , Γ̃)-spaces and let F ∈ Sh(Y,R). We
have

f∗(F )x = Ff̂(x) and f∗(F )x = F f̂(x)

for every x ∈ X̂.

Γ̃-stable closed subspaces. We introduce the notion of a Γ̃-stable closed subspace of a (L , Γ̃)-

space. The main example we have in mind are a finite set of torsion points of the torus (L , Γ̃)-space.

Definition 3.16. Let X be a (L , Γ̃)-space. A Γ̃-stable closed subspace of X is a pair (C, ι) con-

sisting of a topological space C equipped with a Γ̃-action and a Γ̃-equivariant morphism ι : C → X̂
of sites such that ιL := πL ◦ ι : C → XL is a closed embedding for every L ∈ L , i.e. we have

(i) ιL : C → XL is injective and CL := ιL(C) is closed in XL.

(ii) The induced map ιL : C → CL is a homeomorphism.

Note that the fact that ι is Γ̃-equivariant implies that we have γ̃(CL) = Cγ(L) for every L ∈ L

and γ̃ = (γ, λ) ∈ Γ̃. Note also that condition (i) implies (ii) if C is finite. If X be a (L , Γ̃)-space

and (C, ι) is a Γ̃-stable closed subspace of X then the Γ̃-action on X factors through Γ (i.e. Λ-acts
trivially on C). In this case we call (C, ι) is a Γ-stable closed subspace of X.

Examples 3.17. Let F be a number field, S a finite set of nonarchimedean places of F and AS
(resp. ASf ) the prime-to-S (resp. finite prime-to-S) adeles of F . We give examples of Γ̃-stable closed

subspaces of the (L , Γ̃)-spaces A and T considered in Examples 3.4 (d) and (e).

(a) Let V = F and L = IS be as in Examples 3.4 (d). We fix a subgroup Γ of O∗S and put Γ̃ =
ΓnOS ⊆ Aff(OS). Firstly, we describe certain Γ-stable closed subspaces of the (L ,Γ)-space T . For

that note that for a ∈ IS the restriction of the projection πa : T̂ = AS/OS → AS/(OS+âS) ∼= F∞/a
to the subset F/OS ⊆ AS/OS is injective. Indeed, if we put S−1a := (S−1OF ) · a then we have
F = OS+S−1a and OS∩S−1a = a hence S−1a/a ∼= F/OS . Under this identification the restriction
of πa to F/OS is given by the inclusion S−1a/a ↪→ F/a ↪→ F∞/a. Thus if C is a finite Γ-stable

subset of V/OS ⊆ T̂ = AS/OS then the pair (C, ι), where ι = incl : C ↪→ V/OS ↪→ AS/OS is the
inclusion, is a Γ-stable closed subspaces of T . For example if A is an ideal of OS and if we put
T [A] := A−1/OS then the pair (T [A], ι) a O∗S-stable closed subspaces of T .

(b) Let F , S, V , M and L be as in Examples 2.9 (b) and 3.4 (e). Again it is easy to see that

the restriction of the projection πL : T̂ = M⊗OS AS/M→ TL = (M⊗OS AS)/(M + L̂S) to the
subset V/M =M⊗OS F/M⊆M⊗OS AS/M is injective. Hence if Γ is a subgroup of GLOS (M)
and C ⊆ V/M a finite Γ-stable subset then the pair (C, incl) is a Γ-stable closed subspace of T .
For example if N ⊇M is another finitely generated OS-submodule of V and if Γ is a subgroup of

GLF (V ) leaving both M and N invariant then the pair (N/M, ι) is a Γ̃-stable closed subspace of
T .

Sheaf Cohomology. Let X be a (L , Γ̃)-space and let R be a ring. For F ∈ Sh(X,R) (resp.

F ∈ Sh(X, Γ̃, R)) we will write H i(X,F ) (resp. H i(X, Γ̃,F )) for the cohomology groups H i(X̂,F )

(resp. H i(X̂, Γ̃,F )). Also if X is a (L ,Γ)-space and if F ∈ Sh(X,Γ, R) then the cohomology

groups H i(X̂,Γ,F ) will be denoted by H i(X,Γ,F ). We have

Proposition 3.18. For every L ∈ L and F ∈ Sh(X,R) there exists a canonical isomorphism

H i(X,F ) ∼= H i(XL,FL).

Proof. This follows immediately from Prop. 3.6 and the fact that we have F (X̂) = FL(XL) for
every F ∈ Sh(X,R). �
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In particular we obtain

Corollary 3.19. Let X be a discrete (L , Γ̃)-space. We have

(a) H i(X,F ) = 0 for every F ∈ Sh(X,R) and i ≥ 1.

(b) H i(X, Γ̃,F ) = H i(Γ̃, H0(X,F )) for every F ∈ Sh(X, Γ̃, R) and i ≥ 0.

Proof. (a) Let L ∈ L . By Prop. 3.18 we have H i(X,F ) = H i(XL,FL) = 0 for every i ≥ 1 since
XL is discrete.

For (b) note that (a) implies that the spectral sequence (173) degenerates. �

Assume now that there exists L ∈ L that is stabilized by the action of Γ so that the topological

space XL becomes equipped with a Γ̃ = ΓnΛ-action and that FL for F ∈ Sh(X, Γ̃, R) becomes a

Γ̃-equivariant sheaf on XL. In this case we can compare the cohomology groups H•(X, Γ̃,F ) with

the equivariant cohomology groups H•(XL, Γ̃,FL) in the usual sense.

Corollary 3.20. Let X be a (L , Γ̃)-space. Assume that L ∈ L is Γ-stable, i.e. that we have
γ(L) = L for every γ ∈ Γ. Then there are canonical isomorphisms

(65) H•(X, Γ̃,F ) ∼= H•(XL, Γ̃,FL).

for every F ∈ Sh(X, Γ̃, R). A similar statement holds for Γ-equivariant cohomology if X is a
(L ,Γ)-space and F is a Γ-equivariant sheaf on X.

Remark 3.21. Let X be a (L ,Γ)-space and assume that L contains a maximal element L0 (so
that Λ = L0 and Γ ⊆ GL(L0)). Then Prop. 3.18 and Cor. 3.20 imply

H•(X,F ) = H•(XL0 ,FL0) and H•(X,Γ,F ) = H•(XL0 ,Γ,FL0)

for F ∈ Sh(X,R) and F ∈ Sh(X,Γ, R) respectively.

Proof. We show that there exists a morphism of spectral sequences for Γ̃-equivariant cohomology
(see Prop. A.11)(

Ers2 = Hr(Γ̃, Hs(X,F )) =⇒ Er+s = Hr+s(X, Γ̃,F )
)
−→(66) (

Ers2 = Hr(Γ̃, Hs(XL,FL)) =⇒ Er+s = Hr+s(XL, Γ̃,FL)
)
.

By Prop. 3.18 it is an isomorphism on the E2-page hence also on the limit terms.
To define (66) we argue as in ([21], Prop. 3.42). Let 0→ F → I • be an injective resolution of

F in Sh(X, Γ̃, R). By Prop. A.9 (b) the sequence 0→ FL → I •L is still exact. Let 0→ FL →J •

be an injective resolution of FL in the category Sh(XL, Γ̃, R) and let α : I •L →J • be a morphism
such that

0 −−−−→ FL −−−−→ I •Lyid

yα
0 −−−−→ FL −−−−→ J •

L

commutes. Passing to global sections yields a homomorphism of complexes of R[Γ̃]-modules

I •(X) = I •L(XL)
α−−−−→ J •(XL)

that induces a morphism between Γ̃-hypercohomology spectral sequences(
Ers2 = Hr(Γ̃, Hs(I •(X))) =⇒ Er+s = Hr+s(Γ̃,I •(X))

)
−→(

Ers2 = Hr(Γ̃, Hs(J •(XL))) =⇒ Er+s = Hr+s(Γ̃,J •(XL))
)
.
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The first spectral sequence can be identified with the source (by Prop. A.9 (d)) and the second
with the target of (66). �

We can also define cohomology with support in a Γ̃-stable closed subspace (C, ι). As before for
L ∈ L we put ιL = πL ◦ ι : C ↪→ XL and set CL := ιL(C). For F ∈ Sh(X,R) we set

H0
〈C〉(X,F ) = {s ∈ F (X̂) | ∃L ∈ L , s|

X̂\π−1
L (CL)

= 0}.

For L1, L2 ∈ L with L1 ⊆ L2 we have X̂ \ π−1
L2

(CL2) ⊆ X̂ \ π−1
L1

(CL1) hence

H0
CL1

(XL1 ,FL1) = ker(res : F (X̂) −→ F (X̂ \ π−1
L1

(CL1)))(67)

⊆ H0
CL2

(XL2 ,FL2) = ker(res : F (X̂) −→ F (X̂ \ π−1
L2

(CL2))).

It follows

(68) H0
〈C〉(X,F ) =

⋃
L∈L

ker(res : F (X̂) −→ F (X̂ \ π−1
L (CL))) = lim

−→L∈L
H0
CL

(XL,FL).

where we view L again as a partially ordered set with respect to the inclusion. We also define

(69) H0(X \ 〈C〉,F ) := lim
−→L∈L

F (X̂ \ π−1
L (CL)) = lim

−→L∈L
H0(XL \ CL,FL)

where the transition maps in the direct limit are restriction maps. We note that if F is a Γ̃-

equivariant R-sheaf then H0
〈C〉(X,F ) and H0(X \ 〈C〉,F ) carry natural Γ̃-actions, so we may

consider their fixmodules

(70) H0
〈C〉(X, Γ̃,F ) := H0

〈C〉(X,F )Γ̃, H0(X \ 〈C〉, Γ̃,F ) := H0(X \ 〈C〉,F )Γ̃.

Definition 3.22. (a) The i-th right derived functor of the functor H0
〈C〉(X, · ) will be denote by

H i
〈C〉(X, · ) : Sh(X,R) −→ ModR, F 7→ H i

〈C〉(X,F )

and the i-th right derived functor of H0(X \ 〈C〉, · ) by

H i(X \ 〈C〉, · ) : Sh(X,R) −→ ModR, F 7→ H i(X \ 〈C〉,F ).

(b) The derived functors of the two functors (70) will be denoted by

H i
〈C〉(X, Γ̃, · ) : Sh(X, Γ̃, R) −→ ModR, F 7→ H i

〈C〉(X, Γ̃,F ) and

H i(X \ 〈C〉, Γ̃, · ) : Sh(X, Γ̃, R) −→ ModR, F 7→ H i(X \ 〈C〉, Γ̃,F )

respectively.

Proposition 3.23. Let X be a (L , Γ̃)-space and let (C, ι) be a Γ̃-stable closed subspace of X.

(a) We have

H i
〈C〉(X,F ) = lim

−→L∈L
H i
CL

(XL,FL)

H i(X \ 〈C〉,F ) = lim
−→L∈L

H i(XL \ CL,FL)

for every i ∈ Z≥0 and F ∈ Sh(X,R). Moreover if F is a Γ̃-equivariant sheaf then the R-modules

H i
〈C〉(X,F ) and H i(X \ 〈C〉,F ) carry a natural Γ̃-action.

(b) There exists a long exact sequence

(71) . . . −→ H i
〈C〉(X,F ) −→ H i(X,F ) −→ H i(X \ 〈C〉,F ) −→ H i+1

〈C〉 (X,F ) −→ . . .

for every F ∈ Sh(X,R).
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Proof. (a) follows immediately from (68), (69), Prop. 3.6 (b), (c) and the exactness of the direct
limit. (b) Follows from (a) by passing in the long exact sequence

. . . −→ H i
CL

(XL,FL) −→ H i(XL,FL) −→ H i(XL \ CL,FL) −→ H i+1
CL

(XL,FL) −→ . . .

to the direct limit over L ∈ L . �

Remark 3.24. Note that Prop. 3.23 implies that there are canonical homomorphisms

(72) H i
CL

(XL,FL) −→ H i
〈C〉(X,F ), H i(XL \ CL,FL) −→ H i(X \ 〈C〉,F )

for every L ∈ L , F ∈ Sh(X,R) and i ≥ 0. If L is Γ̃-stable lattice and F is a Γ̃-equivariant sheaf

then it is easy to see that the maps (72) are Γ̃-equivariant.

Corollary 3.25. Let X be a (L , Γ̃)-space and let (C, ι) be a Γ̃-stable closed and discrete subspace
of X.
(a) Let F ∈ Sh(X,R) and assume that the following conditions hold

(i) XL is an oriented n-dimensional manifold for every L ∈ L .
(ii) The covering πL1,L2 : XL1 ⊆ XL2 preserves the orientations for every pair L1 ⊆ L2 in L .
(iii) FL is a locally constant sheaf.

Then we have

(73) H i
〈C〉(X,F ) ∼=

{ ⊕
c∈C Fc if i = n,

0 if i 6= n.

(b) Let F ∈ Sh(X, Γ̃, R). Assume that (i), (iii) and

(ii’) The covering ϕ : XL1 → XL2 preserves orientations for every morphism ϕ : L1 → L2 in

C(L , Γ̃)

holds. Then (73) is a Γ̃-equivariant isomorphism.

Proof. By ([13], 3.2.3) we have

H i
〈C〉(X,F ) = lim

−→L∈L
H i
CL

(XL,FL) =

{
lim
−→L∈L

(FL)|CL if i = n,

0 if i 6= n.

=

{ ⊕
c∈C Fc if i = n,

0 if i 6= n.

�

In the examples we are interested in (namely the examples (51) and (52)) the strong condition (ii’)
usually does not hold. Instead of (ii’) we assume that there exists a homomorphism ε : Γ→ {±1}
that indicates whether the covering ϕ : XL1 → XL2 preserves the orientation or not.

Corollary 3.26. Let X be a (L , Γ̃)-space, let (C, ι) be a Γ̃-stable closed and discrete subspace of

X and let ε : Γ→ {±1} be a homomorphism. Let F ∈ Sh(X, Γ̃, R) and assume that the conditions
(i), (iii) of Cor. 3.25 as well as

(ii”) The covering ϕ : XL1 → Xγ(L2) preserves (resp. reverses) orientations for every morphism

ϕ = (γ̃, L1, L2), γ̃ = (γ, λ) in C(L , Γ̃) with ε(γ) = 1 (resp. ε(γ) = −1)

holds. Then there exists an isomorphism of Γ̃-modules 8

Hn
〈C〉(X,F (ε)) ∼=

⊕
c∈C

Fc.

8See Remark A.10 for the definition of F (ε).
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We briefly address functorial properties for some of the cohomology groups introduced in this

section. Let f : X → Y be a morphism of (L , Γ̃)-spaces. By (176) and (177) there exists natural
morphisms of δ-functors

H i(Y,F ) −→ H i(X, f∗(F )) i ≥ 0, F ∈ Sh(Y,R),(74)

H i(Y, Γ̃,F ) −→ H i(X, Γ̃, f∗(F )) i ≥ 0, F ∈ Sh(Y, Γ̃, R).(75)

Now assume that (C, ι) is a Γ̃-stable closed subspace of Y disjoint from the image of f , i.e. we
assume that CL is disjoint of fL(XL) for every L ∈ L .9 It follows immediately from the definitions
that the functor (74) for i = 0 factors canonically in the form

H0(Y,F ) −→ H0(Y \ 〈C〉,F ) −→ H0(X, f∗(F )).

The second homomorphism extends to a morphism of δ-functors

H i(Y \ 〈C〉,F ) −→ H i(X, f∗(F )) i ≥ 0, F ∈ Sh(Y,R)

so that the composition H i(Y,F ) → H i(Y \ 〈C〉,F ) → H i(X, f∗(F )) is the morphism (74).

Similarly, for Γ̃-equivariant sheaves there exists a natural morphism of δ-functors

(76) H i(Y \ 〈C〉, Γ̃,F ) −→ H i(X, Γ̃, f∗(F )) i ≥ 0, F ∈ Sh(Y, Γ̃, R)

so that (75) factors in the form H i(Y, Γ̃,F )→ H i(Y \ 〈C〉, Γ̃,F )→ H i(X, Γ̃, f∗(F )).

4. Adelic Eisenstein Classes

The sheaf of locally polynomial distributions. In this section we let V be an oriented Q-
vector space of dimension n, let L be a non-empty subset of LatV such that (22) holds and put

Λ = Λ(L ) =
⋃
L∈L L. Moreover we fix a subgroup Γ of GLQ(V ) such that L is Γ̃-stable and put

Γ̃ := Γ n Λ ⊆ AffQ(V ). In the following we denote by B, A and T the (L , Γ̃)-spaces of examples

3.4 (a), (b), (c). Recall that we have B̂ = Λ̂ := lim
←−L∈L

Λ/L (see (50)) and that a subset U ⊆ B̂ is

open if and only if there exists L ∈ L such that U is L̂-stable.
For a fixed ring R we define an R-presheaf Dlpol = Dlpol,B on B by

Dlpol(U) := DL−lpol(U ∩ Λ, R) = Hom(IntL –loc,b(U ∩ Λ,Z), R)

for U ⊆ Λ̂ open. For a pair of open subsets U1 ⊆ U2 ⊆ Λ̂ the restriction is the map

Dlpol(U2) −→ Dlpol(U1), µ 7→ µ|U1∩Λ

(compare (28)). By Lemmas 2.11 and 3.10 Dlpol is a sheaf. Moreover it carries a canonical Γ̃-action
given by the maps (33).

Recall that A = B × VR and that T = A/Λ and that there are canonical morphisms pr : A→ T
and prB : A → B. The pull-back of Dlpol,B under prB : A → B will be denoted by Dlpol = Dlpol,A

as well. By Example 3.8 there exists a natural Γ-equivariant R-sheaf D = Dlpol on T such that

pr∗(D) = Dlpol,A = (prB)∗(Dlpol,B).

Concretely, the section of D over an open subset U ⊆ T̂ =
(

Λ̂× VR
)
/Λ are the Λ-invariant elements

of Dlpol,A(pr−1(U)).

Definition 4.1. The sheaves Dlpol,B, Dlpol,A and Dlpol will be called the sheaf of locally polynomial
R-valued distributions on B, A and T respectively.

9Note that this condition is equivalent to requiring that f̂(X̂) and ι(C) are disjoint
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We are going to describe the sheaf DL on TL ∼= VR/L for L ∈ L . Let

j : VR −→ T̂ =
(

Λ̂× VR
)
/Λ, v 7→ (0, v) + Λ.

The composition πL ◦ j is the universal covering of TL, namely it is the map

qL : VR −→ VR/L, v 7→ v + L.

Since the group of deck transformations of the covering qL is the group L, any R[L]-module M

defines a local system M̃ on TL. Recall that its sections over an open subset U ⊆ TL are given by

(77) M̃(U) = {f ∈ C(q−1
L (U),M) | f(λ+ v) = λ · f(v) ∀λ ∈ L, v ∈ VR}.

Lemma 4.2. We have DL = ˜Dlpol(L,R), i.e. DL is the sheaf associated to the R[L]-module
Dlpol(L,R) = Hom(Intloc(L,Z), R) on TL.

Proof. Firstly, note that (Dlpol,A)L ∈ Sh(AL, R) is the pull-back of the sheaf (Dlpol,B)L on the
discrete space BL = Λ/L under the projection pr1 : AL = Λ/L × VR → Λ/L. Define ι : VR →
AL = Λ/L × VR, v 7→ (0, v) so that prL ◦ι = qL. Both maps prL : AL → TL and qL : VR → TL
are Galois coverings with group of deck transformation Λ and L respectively. Hence the functors
(prL)∗ : Sh(TL, R) → Sh(AL,Λ, R) and (qL)∗ : Sh(TL, R) → Sh(VR, L,R) are equivalences of
categories. Since the pull-back of DL under prL : AL → TL is the Λ-equivariant sheaf (Dlpol,A)L on
AL, we see that the pull-back of DL under qL : VR → TL is the L-equivariant sheaf ι∗(Dlpol,A)L =
(pr1 ◦ι)∗((Dlpol,B)L). Note that pr1 ◦ι is the constant map VR → Λ/L, v 7→ 0. Hence (qL)∗(DL) =
ι∗(Dlpol,A)L is the constant L-equivariant sheaf on VR associated to the L-module (Dlpol,B)L({0}) =
Dlpol(L,R). �

Next we determine the stalks of Dlpol,B, Dlpol,A and Dlpol.

Lemma 4.3. (a) There exists canonical isomorphisms

βb : (Dlpol,B)b −→ Dlpol,b(Λ, R) and βb : (Dlpol,B)b −→ Dlpol(Λ, R)

for every b ∈ B̂. Moreover the diagram

(78)

(Dlpol,B)b
βb−−−−→ Dlpol,b(Λ, R) (Dlpol,B)b

βb−−−−→ Dlpol(Λ, R)yγ̃ yγ̃ yγ̃ yγ̃
(Dlpol,B)γ̃−1(b)

βγ̃(b)−−−−→ Dlpol,b(Λ, R) (Dlpol,B)γ̃
−1(b) βγ̃

−1(b)

−−−−−→ Dlpol(Λ, R)

commutes for every γ̃ ∈ Γ̃ and b ∈ B̂.

(b) Similarly there exists canonical isomorphisms

βa : (Dlpol,A)a −→ Dlpol,b(Λ, R) and βa : (Dlpol,A)a −→ Dlpol(Λ, R)

for every a ∈ Â. Also the diagram analogous to (78) for Dlpol,A commutes for every a ∈ Â and

γ̃ ∈ Γ̃.

(c) There exists a canonical isomorphisms

(79) βt : Dt −→ Dlpol,b(pr−1(t), R) and βt : D t −→ Dlpol(pr−1(t), R)
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for every t ∈ T̂ . Moreover the diagram

Dt
βt−−−−→ Dlpol,b(pr−1(t), R) D t βt−−−−→ Dlpol(pr−1(t), R)yγ yγ yγ yγ

Dγ−1(t)

βγ−1(t)−−−−→ Dlpol,b(pr−1(γ(t)), R) Dγ−1(t) βγ
−1(t)

−−−−−→ Dlpol(pr−1(γ−1(t)), R)

commutes for every γ ∈ Γ and t ∈ T̂ . In particular if t ∈ T̂ is a Γ fixed-point then the maps (79)
are isomorphisms of R[Γ]-modules.

Proof. (a) Let b ∈ B̂ = Λ̂ and put bL := πL(b) ∈ Λ/L for L ∈ L . Since Λ̂ =
⋃
L∈L L̂ we have b ∈ L̂

for L ∈ L sufficiently large. It follows

(Dlpol,B)b = lim
−→L∈L

Dlpol,B(π−1
L (bL)) = lim

−→L∈L ,b∈L̂
Dlpol,B(L̂) = lim

−→L∈L
Dlpol(L) = Dlpol,b(Λ, R)

and similarly (Dlpol,B)b = Dlpol(Λ, R). (b) follows immediately from (a) and Prop. 3.15.

For (c) note that for the stalk Dt for t ∈ T̂ can be identified with the Λ-invariant elements of∏
a∈pr−1(t)(Dlpol,A)a. Thus according to (b), the R-module Dt can (and will) be identified with the

set of maps µ : pr−1(t)→ Dlpol,b(Λ, R), a 7→ µa that satisfy µλ+a = (τ−λ)∗(µa) for every λ ∈ Λ and
a ∈ pr−1(t). For such µ choose a ∈ pr−1(t) and define µ̃ := (ψa)∗(µa) ∈ Dlpol,b(pr−1(t), R) where
ψa is the Λ-equivariant bijection ψa : Λ → pr−1(t), λ 7→ λ + a. We show that µ̃ is independent of
the choice of a. For that let a′ ∈ pr−1(t) and let λ ∈ Λ with a′ = λ+ a. Then we have

(ψ′a)∗(µ
′
a) = (ψλ+a)∗(µλ+a) = ((ψλ+a)∗ ◦ (τ−λ)∗)(µa) = (ψa)∗(µa).

It is easy to see that the map µ 7→ µ̃ is the desired isomorphism βt. The existence of second
isomorphism βt is proved similarly. �

Remark 4.4. For L ∈ L the stalks of the sheaf DL on TL admit a description similar to that for
D in Lemma 4.3 (c). Namely, there exists a canonical isomorphism

(80) (DL)x −→ Dlpol(q
−1
L (x), R)

for every x ∈ TL. Indeed, by Lemma 4.2 and (77) the stalk (DL)x can be identified with the set of
maps µ : q−1

L (x)→ Dlpol(L,R), h 7→ µh that satisfy µλ+h = λ · µh for every h ∈ pr−1
L (t) and λ ∈ L.

Given such µ we define its image under (80) as the unique µ̃ ∈ Dlpol(q
−1
L (t), R) that satisfies∫

q−1
L (t)

f(h)dµ̃(h) =

∫
L
f(λ+ h′)d(µ′h)(λ).

for every f ∈ Intloc(q
−1
L (t),Z) and h′ ∈ q−1

L (t).

Next we are going to determine the cohomology of T with coefficients in the twisted sheaf D(ε)
(see Remark A.10). Here ε denotes the sign character of Aff(V ) introduced in (35), i.e. we have
ε((γ, v)) = sign(det(γ)) for every (γ, v) ∈ Aff(V ) = GL(V ) n V . Firstly, note that according to
Cor. 3.19 we have

(81) H i(A,Dlpol,A) = H i(B,Dlpol,B) =

{
Dlpol(Λ, R) if i = 0,

0 if i ≥ 1.

The second equality follows from Cor. 3.19. The first equality can be seen using the Leray spectral
sequence (169) associated to the morphism prB : A → B. For that note that according to Prop.
3.7 we have (prB)∗Dlpol,A = Dlpol,B and Ri(prB)∗Dlpol,A = 0 for i ≥ 1 since the fibers of prB,L :
AL ≈ Rn ×BL → BL are contractible for every L ∈ L .
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Proposition 4.5. (a) For i ≥ 0 we have

(82) H i(T,D(ε)) =

{
R if i = n,
0 if i 6= n

and H i(T,Γ,D(ε)) = Exti−nR[Γ](R,R).

(b) Let (C, ι) be a finite Γ-stable closed subspace of T . Then,

(83) H i
〈C〉(T,D(ε)) =

{
Dlpol,b(pr−1(C), R) if i = n,

0 if i 6= n

and

(84) H i
〈C〉(T,Γ,D(ε)) =

{
Dlpol,b(pr−1(C), R)Γ if i = n,

0 if i ≤ n− 1.

(c) Under the assumptions of (b) we have

(85) H i(T \ 〈C〉,D(ε)) =

{
ker
(
aug : Dlpol,b(pr−1(C), R)→ R

)
if i = n− 1,

0 if i 6= n− 1

and

(86) H i(T \ 〈C〉,Γ,D(ε)) =

{
ker
(
aug : Dlpol,b(pr−1(C), R)Γ → R

)
if i = n− 1,

0 if i 6= n− 1.

On the right side of (83) – (86) we have identified C with ι(C) ⊆ T̂ so that pr−1(C) is a Λ-subset

of Â. The map aug : Dlpol,b(pr−1(C), R)→ R is given by evaluating µ ∈ Dlpol,b(pr−1(C), R) at the
constant function ≡ 1 on pr−1(C).

Proof. (a) Consider the spectral sequence (173) for the Λ-equivariant cohomology of A with coeffi-
cients in Dlpol,A(ε)

Ers2 = ExtrR[Λ](R,H
s(A,Dlpol(ε))) =⇒ Er+s = Hr+s(A,Λ,Dlpol(ε)).

By (81) the spectral sequence degenerates, i.e. we have Ei02 = Ei for every i ≥ 0. Moreover the
fact that the functor (3.8) is an equivalence of categories implies H•(T,D) ∼= H•(A,Λ,Dlpol,A).
Together with Prop. 2.15 we conclude

H i(T,D(ε)) = ExtiR[Λ](R,H
0(A,Dlpol(ε))) = ExtiR[Λ](R,Dlpol(Λ, R)(ε)) =

{
R if i = n,
0 if i 6= n.

The last assertion follows from (82) by applying the spectral sequence (173) to X = T̂ and F = D .
(b) The first assertion follows from Cor. 3.26 and Lemma 4.3 (c) and the second from the first

and Lemma A.12.
(c) The equality (85) follows from from (a) and (b) using the long exact sequences (71) and (86)

follows from (85) and Lemma A.12. �

Let t ∈ T̂ be a Γ fixed-point and put tL := πL(t) ∈ TL for every L ∈ L . We define a morphism

of (L , Γ̃)-spaces

ιt := t+ ι : B −→ T

where ι : B → T was defined in (54). More precisely we define ιt,L : BL → TL by ιt,L(b) = ιL(b)+tL
for every L ∈ L and b ∈ BL. For the Γ-equivariant cohomology of B with coefficients in ι∗t (D(ε))
we obtain
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Proposition 4.6. For i ≥ 0 we have

(87) H i(B, ι∗t (D(ε))) =

{
Dlpol(pr−1(t), R)(ε) if i = 0,

0 if i ≥ 1

and

H i(B,Γ, ι∗t (D(ε))) = H i(Γ,Dlpol(pr−1(t), R)(ε)).

Proof. By Cor. 3.19 (a) we have H i(B, ι∗t (D(ε))) = 0 if i ≥ 1. Moreover by Example 3.12, Prop.
3.15 and Lemma 4.3 (c) we have

H0(B, ι∗t (D(ε))) = (ι∗t (D(ε)))0 = D t(ε) = Dlpol(pr−1(t), R)(ε).

This proves (87). The second assertion follows from the first and Cor. 3.19 (b). �

Adelic Eisenstein Classes. In this section we continue with the set-up of the last section but
for specific V and L . Namely we choose the set-up of Example 2.9 (b), i.e. F denotes a number
field of degree d over Q, S a finite set of nonarchimedean places of F , V and F -vector space of
dimension m (so that n = dm), M a finitely generated OS-submodule of V with M⊗OS F = V
and L the set of finitely generated OF -submodules L ⊆M satisfying L⊗OF OS =M (note then
that we have Λ(L ) =M). Moreover we fix a subgroup Γ of GLOS (M). Note that L is Γ-stable

and that it satisfies (22). According to Example 3.4 (e) we have T̂ = (V ⊗F AS)/M. As in the last
section let R be a ring and let D = Dlpol be the associated sheaf of locally polynomial R-valued
distributions on T .

Let v ∈ V and put t = v +M∈ V/M⊆ V ⊗F AS/M = T̂ . Recall that by Lemma 4.3 (c) there
exists canonical isomorphisms

βt : Dt −→ Dlpol,b(v +M, R) and βt : D t −→ Dlpol(v +M, R).

According to Cor. 2.18 if the order of t in V/M is invertible in R then the targets of these maps can
be identified with Dlpol,b(M, R) and Dlpol(M, R) respectively, i.e. in this case there exists canonical
isomorphisms

(88) βt : Dt −→ Dlpol,b(M, R) and βt : D t −→ Dlpol(M, R).

Let C ⊆ V/M be a finite Γ-stable subset. By Example 3.17 (b) the pair (C, ι) is a closed subspaces

of T (where ι = incl : C ↪→ V/M ↪→ T̂ is the inclusion). Thus by (88) and Prop. 4.5 (c) we obtain

Proposition 4.7. Let C be a finite Γ-stable subset of V/M and assume that the order of every
element in C is invertible in R. Then,

H i(T \ 〈C〉,Γ,D(ε)) =

{
ker (aug : MapsΓ(C,Dlpol,b(M, R))→ R) if i = n− 1,

0 if i 6= n− 1.

Here the homomorphism aug is given by mapping µ ∈ MapsΓ(C,Dlpol,b(M, R)) to the sum (over
c ∈ C) of the evaluation of µ(c) at the constant function ≡ 1 on M.

Let v0 ∈ V and assume that t = v0 +M∈ V/M⊆ T̂ is a Γ fixed-point. According to Prop. 4.6
for the Γ-equivariant cohomology of B with coefficients in ι∗t (D(ε)) we get

(89) H i(B,Γ, ι∗t (D(ε))) = H i(Γ,Dlpol(v0 +M, R)(ε))

for every i ≥ 0. If the order of t is invertible in R then this simplifies to

H i(B,Γ, ι∗t (D(ε))) = H i(Γ,Dlpol(M, R)(ε)).

With this preparation we are able to define our adelic Eisenstein classes. The construction is
modelled after that of the Eisenstein classes of Beilinson, Kings and Levin ([1], Def. 3.32). We fix
a finite Γ-stable non-empty subset C ⊆ V/M. In the following we assume that the order of every
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element of C is invertible in R.10 Let t ∈ V/M be a Γ fixed-point that does not lie in C. We need
the following simple

Lemma 4.8. The image of ιt is disjoint from C, i.e. the image of ιt,L : BL → TL is disjoint from
πL(C) for every L ∈ L .

Proof. It suffices to see that the image of ι̂t : B̂ → T̂ is disjoint from C. For that we write elements
of V ⊗F AS as pairs (x, y) with x ∈ V ⊗F ASf and y ∈ V ⊗F F∞ = VR. Concretely, ι̂t is the map

V ⊗F ASf → V ⊗F AS/M, x 7→ (x + v, v) mod M. Assume that c ∈ C, c = w +M ∈ V/M
lies in the image of ι̂t. Thus there exists x ∈ V ⊗F ASf with (x + v, v) = (w,w) mod M, i.e.

(x+ v, v) = (w,w) + (m,m) for some m ∈M. It follows x = 0 and v−w = m ∈M hence t = c, a
contradiction. �

Remark 4.9. The image of ιt,L :M/L ⊆ VR/L can be characterized as follows. It consists of those
elements t0 ∈ V/L ⊆ VR/L that are mapped to t under the canonical projection V/L→ V/M.

By (76) the morphism ιt induces a homomorphisms

H i(T \ 〈C〉,Γ,D(ε)) −→ H i(B,Γ, ι∗t (D(ε)))

for every i ≥ 0. Together with Prop. 4.7 and (89) we obtain for i = n− 1 the homomorphism

(90) ker (aug : MapsΓ(C,Dlpol,b(M, R))→ R) −→ Hn−1(Γ,Dlpol(v +M, R)(ε)).

By viewing R ⊆ R[M] as submodules of Dlpol,b(M, R) we obtain

R[C] = Maps(C,R) ⊆ Maps(C,R[M]) ⊆ MapsΓ(C,Dlpol,b(M, R))

hence (R[C]0)Γ ⊆ ker(aug : MapsΓ(C,Dlpol,b(M, R))→ R) where R[C]0 := ker(deg : R[C]→ R).

Definition 4.10. Let

(91) Eis(t) : (R[C]0)Γ −→ Hn−1(Γ,Dlpol(v +M, R)(ε)) α 7→ Eisα(t)

be the restriction of the map (90) to the subgroup (R[C]0)Γ. The element

(92) Eisα(t) ∈ Hn−1(Γ,Dlpol(v +M, R)(ε))

will be called adelic Eisenstein class associated to t and α.

Remark 4.11. If the order of t is invertible in R as well then the coefficients of the cohomology
group in (92) can be identified with Dlpol(M, R), i.e. in this case we have

Eisα(t) ∈ Hn−1(Γ,Dlpol(M, R)(ε)).

We want to relate our adelic Eisenstein classes (92) to the classes ([1], Def. 3.32) of Beilinson,
Kings and Levin. For L ∈ L put tL = πL(t) ∈ TL. Let t0 ∈ TL be contained in the image of
the morphism ιt : B → T , i.e. we assume that t0 is of the form t0 = tL + t1 ∈ V/L ⊆ TL for
some t1 = m + L ∈ M/L so that t0 = v0 + L with v0 := v + m ∈ V . Let Γ0 be a subgroup
of Γ that stabilises L and t0, i.e. we have γ(L) = L and γ(t0) = t0 for every γ ∈ Γ0. Since
q−1
L (t0) = v0 +L ⊆ v0 +M = v +M⊆ V we can consider the Γ0-equivariant restriction (see (28))

(93) Dlpol(v +M, R) −→ Dlpol(v0 + L,R), µ 7→ µ|v0+L.

Recall that the logarithm sheaf L ogL on TL introduced in ([1], §3.4) is defined as the local
system associated to the R[L]-algebra R[[L]] ∼= Dpol(L,R). The Γ0-action on L provides L ogL with
the structure of a Γ0-equivariant sheaf. The stalks of L ogL admit a similar description as those of

10Note that by Remark 2.19 this holds if the residue characteristic of every prime in S is invertible in R.
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DL (see Remark 4.4), namely for x ∈ TL we have L ogL,x
∼= Dpol,L(q−1

L (x), R). Since t0 is stabilised
by Γ0 and disjoint from C there exists a canonical map (see [1], Def. 3.32)

EisL(t0) : (R[C]0)Γ0 −→ Hn−1(Γ0, (L ogL)t0(ε)) ∼= Hn−1(Γ0,Dpol(v0 + L,R)(ε)),(94)

α 7−→ EisL,α(t0).

Its definition is similar to that of the map (91) above. We are going to review the main steps of
the construction in the beginning of the proof of the Prop. 4.13 below.

Remark 4.12. If the order of t0 is invertible in R then there exists a canonical isomorphism of
Γ0-modules Dpol(v0 + L,R) = (L ogL)t0

∼= Dpol(L,R) = R[[L]] (see [1], 3.24) so that EisL,α(t0) ∈
Hn−1(Γ0, R[[L]](ε)) in this case.

Composing (93) with the canonical map Dlpol(v0+L,R)→ Dpol(v0+L,R) yields a Γ0-equivariant
homomorphism Dlpol(v+M, R) −→ Dpol(v0+L,R). Together with the inclusion Γ0 ↪→ Γ it induces
a homomorphism

(95) Hn−1(Γ,Dlpol(v +M, R)(ε)) −→ Hn−1(Γ0,Dpol(v0 + L,R)(ε)).

Proposition 4.13. For every α ∈ (R[C]0)Γ the image of the adelic Eisenstein class Eisα(t) under
the homomorphism (95) is the Eisenstein class EisL,α(t0) of Beilinson, Kings and Levin.

Proof. Let

(96) H•(TL \ CL,Γ0,L ogL(ε)) −→ H•({t0},Γ0, ι
∗
t0(L ogL(ε))) ∼= H•(Γ0, (L ogL)t0(ε))

be the canonical homomorphism of equivariant cohomology groups induced by the Γ0-equivariant
embedding ιt0 : {t0} ↪→ TL \ CL. Using similar arguments as in the proof of (86) above one shows
that

(97) Hn−1(TL \ CL,Γ0,L ogL(ε)) ∼= Hn−1(TL \ CL,L ogL(ε))Γ0 ∼= ker((
⊕
c∈CL

L ogc)
Γ0 → R).

Since all points in CL are torsion points of TL whose orders are invertible in R there are canonical
isomorphisms of Γ0-modules

⊕
c∈CL L ogc

∼= Maps(C,Dpol(L,R)) (see [1], 3.24). Therefore the

source of the map (96) in degree n−1 can be identified with ker
(
aug : MapsΓ0

(C,Dpol(L,R))→ R
)
.

The map (94) is the restriction of (96) (in degree n− 1) to the subgroup (R[C]0)Γ0 .
Note that in the construction of (94) we could have replaced the sheaf L ogL with DL and the

coefficients Dpol(v0 +L,R)(ε) in the target of (94) with Dlpol(v0 +L,R)(ε). Indeed, it follows again

from Prop. 4.5 (c) (applied to T = TL (L); compare Remark 3.21) that ([1], Prop. 3.24 and Cor.
3.28) hold as well if we replace L ogL with the sheaf DL.

Consider the diagram

ker
(
aug : MapsΓ0

(C,Dpol(L,R))→ R
) (97)−−−−−→∼=

Hn−1(TL \ CL,Γ0,L ogL(ε))
1−−−−−→ Hn−1(BL,Γ0, ι∗t,L L ogL(ε))

2

x 3

x 4

x
ker
(
aug : MapsΓ0

(C,Dlpol(L,R))→ R
) 5−−−−−→∼=

Hn−1(TL \ CL,Γ0,DL(ε))
6−−−−−→ Hn−1(BL,Γ0, ι∗t,LDL(ε))

7

y 8

y 9

y∼=
ker
(
aug : MapsΓ0

(C,Dlpol,b(M, R))→ R
) (90)−−−−−→∼=

Hn−1(T \ 〈C〉,Γ0,D(ε))
(4)−−−−−→ Hn−1(B,Γ0, ι∗tD(ε))

incl

x 10

x 11

x
ker
(
aug : MapsΓ(C,Dlpol,b(M, R))→ R

) (90)−−−−−→∼=
Hn−1(T \ 〈C〉,Γ,D(ε))

(4)−−−−−→ Hn−1(B,Γ, ι∗tD(ε))
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Here the maps 2, 3 and 4 are all induced by the canonical map Dlpol(L,R)→ Dpol(L,R) respectively
the associated morphism of sheaves DL → L ogL. The isomorphism 5 is defined similarly to
(97) and the maps 1 and 6 similarly to (76). 7 is induced by the canonical map Dlpol(L,R) →
Dlpol,b(M, R), µ 7→ µ! (see (29)). The map 8 is defined by first identifying source and target with

Hn−1(TL \ CL,DL(ε))Γ0 and Hn−1(T \ 〈C〉,D(ε))Γ0 respectively. It is then obtained by passing
in the second map of (72) to Γ0-invariants. The map 9 is the isomorphism (65) of Cor. 3.20 (for
X = B and F = D). 10 and 11 are the obvious maps.

Let c ∈ Hn−1(BL,Γ0, ι
∗
t,LDL(ε)) denote the image of α ∈ (R[C]0)Γ ⊆ (R[C]0)Γ0 under the

composition of 5 and 6. By (89) we can identify the group in the lower right corner of the diagram
with Hn−1(Γ,Dlpol(v +M, R)(ε)). Hence α is mapped under the composition of the lower two
horizontal maps to Eisα(t). Therefore the commutativity of the diagram shows that Eisα(t) is
mapped to c under the composition of 11 with the inverse of 9. On the other hand by the definition
of (94) the image of c under the composition of 4 with the map

Hn−1(BL,Γ0, ι
∗
t,L L ogL(ε)) −→ Hn−1({t1},Γ0, ι

∗(ι∗t,L L ogL)(ε)) ∼= Hn−1(Γ0, (L ogL)t0(ε))

induced by the inclusion ι : {t1} ↪→ BL is easily seen to be equal to Eisα(t0). The proves the
assertion. �

5. Eisenstein classes and special values of partial zeta functions

The aim of this section is to relate the adelic Eisenstein classes defined in the previous section to
special values of partial zeta functions and to Stickelberger elements. Throughout this section F
denotes a totally real number field of degree n ≥ 2 over Q. We choose an ordering ξ1, . . . , ξn : F → R
of the set of field embeddings Hom(F,R). Note that this choice provides F∞ = F ⊗ R with an
orientation. We recall the notion of a partial zeta function associated to a ray class of F . For that
we fix an ideal m ⊆ OF , m 6= (0). For a ray class A ∈ Im/Pm the partial zeta function ζ(m,A, s) is
defined as

ζ(m,A, s) =
∑

a∈A,a⊆OF

N(a)−s

for <(s) > 1. It admits an analytic continuation to the whole complex plane except for a single
simple pole at s = 1.

Recall (1) that there are also partial zeta function ζS(σ, s) associated to an elements σ of the
Galois group G of an abelian extension of K/F . It is given by ζS(σ, s) =

∑
(a,S)=1,σa=σ N(a)−s

if Re(s) > 1. Here S is a finite set of nonarchimedean places of F containing all places that
are ramified in K and the sum is taken over all ideals a ⊆ OF that are relatively prime to the
elements in S and such that their image σa ∈ G under the Artin map is equal to σ. If m is the
nonarchimedean part of a cycle of declaration of K/F (cf. [15], p. 103) so that K ⊆ Fm and if S
consists of all prime divisors of m then we have

(98) ζS(σ, s) =
∑
A

ζ(m,A, s)

Here the sum is taken over the finite number of ray classes A ∈ Im/Pm that are mapped to σ under
the Artin map.

Recall as well the T -smoothed Stickelberger element ΘS,T (K/F, s) defined in (3) in the intro-
duction (where T is an additional finite set of nonarchimedean places of F disjoint from S). We
will consider in this section only the case when T consist of a single place q where we simply write
ΘS,q(K/F, s) instead of ΘS,{q}(K/F, s). Note that we have

(99) ΘS,q(K/F, s) =
∑
σ∈G

(
ζS(σ, s)−N(q)1−sζS(σσ−1

q , s)
)

[σ−1].
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The Eisenstein class Eisb,c. We fix two non-trivial coprime ideals b, c ( OF with 2 6∈ c. Let Σ
be the set prime factor of b · c and put

Γ := O ∗Σ,c := {γ ∈ O ∗Σ | γ ≡ 1 mod cOΣ}.
We consider the Eisenstein classes (92) defined in the previous section in the case V = F ,M = cOΣ

and Γ. Thus we have L = c · IΣ (i.e. L is the set of fractional ideal of the form c ·a with a coprime

to Σ) and T̂ = AΣ/cOΣ. Put

C = T [b] := b−1cOΣ/cOΣ and t := 1 + cOΣ ∈ F/cOΣ.

Note that C is a finite Γ-stable subset of F/cOΣ and and that t ∈ F/cOΣ is a Γ fixed-point with
t 6∈ T [b]. We choose a coefficient ring R ⊆ C such that N(b) is invertible in R. In this set-up the
map (91) will be denoted by

Eisc = Eisc(t) : (R[T [b]]0)Γ −→ Hn−1(Γ,Dlpol(1 + cOΣ, R)(ε)), α 7→ Eisα,c .

Here ε : F ∗ → {±1} is the character given by ε(x) = sign(NF/Q(x)) for x ∈ F ∗. We consider the
following special choice for α (following [1])

α[b] := N(b) · 0−
∑
c∈T [b]

c

and define

(100) Eisb,c := Eisα[b],c ∈ Hn−1(Γ,Dlpol(1 + cOΣ, R)(ε)).

In order to establish the relation of the class (100) to partial zeta values in Theorem 5.5 below we
will rephrase Prop. 4.13 in a special cases. Namely, if m, a ⊆ OF are coprime ideals that are also
relatively prime to Σ then we apply 4.13 to the element t0 := 1 + cma−1 of Tcma−1 = F∞/cma−1

(it lies in the image of ιt,cma−1 by Remark 4.9). We note that Ec is the subgroup of Γ = O ∗Σ,c that

stabilizes the lattice cma−1 ⊆ OΣ and that Emc is the stabilizer of t0 ∈ Tcma−1 in Ec. We denote the
class (94) for L := cma−1, the group Γ0 = Emc,+ and α = α[b] by

Eiscma−1,b(t0) ∈ Hn−1(Ecm,+,Dpol(1 + cma−1, R)).

Consider the pair of essentially dual maps

j : Int(1 + cma−1,Z)→ Intloc,b(1 + cOΣ,Z), f 7→ f!(101)

j∨ : DΣ
lpol(1 + cOΣ, R)→ Dpol(1 + cma−1, R), µ 7→ µ|1+cma−1 .(102)

Together with the inclusion Ecm,+ ↪→ Γ they induce homomorphisms

cor := corΓ
Ecm,+

◦j∗ : Hn−1(Ecm,+, Int(1 + cma−1,Z))→ Hn−1(Γ, Intloc,b(1 + cOΣ,Z)(ε)),(103)

res := (j∨)∗ ◦ resΓ
Ecm,+

: Hn−1(Γ,Dlpol(1 + cOΣ, R)(ε))→ Hn−1(Ecm,+,Dpol(1 + cma−1, R)).(104)

By Prop. 4.13 we have

(105) res(Eisb,c) = Eiscma−1,b(t0).

Homology classes associated to ray classes. Let A be another ring (later A = Z or A = Z[G]
is the group ring of an abelian Galois group). The pairing (24) induces a cap-product pairing

∩ : Hn−1(Γ,Dlpol(1 + cOΣ, R)(ε))×Hn−1(Γ, Intloc,b(1 + cOΣ, A)(ε)) −→ A⊗R.
Our aim is to show that the cap-product of the Eisenstein class (100) with certain homology classes
associated canonically to ray classes yields the values of partial zeta functions at non-positive
integers. To define these homology classes we follow mostly ([7], §3 and §5.3).

Firstly, we present a general set-up to produce non-trivial homology classes in degree n− 1. To
fix ideas, let U ⊆ UΣ be a closed subgroup containing U∞ and let M an abelian group. We consider

38



the (AΣ)∗-module C((AΣ)∗/U ,M) of locally constant maps ϕ : (AΣ)∗/U → M and its submodule
Cc((AΣ)∗/U ,M) consisting of those ϕ that have compact support. The (AΣ)∗-action is defined by
(xϕ)(aU) := ϕ(x−1aU) for x ∈ (AΣ)∗, aU ∈ (AΣ)∗/U and ϕ ∈ C((AΣ)∗/U ,M).

Now assume that M is a Γ-module. We equip C((AΣ)∗/U ,M) with a Γ-action defined by
(γϕ)(aU) := γ · ϕ(γ−1aU) for γ ∈ Γ, ϕ ∈ C((AΣ)∗/U ,M) and aU ∈ (AΣ)∗/U . If U1 ⊆ U2

are closed subgroups of UΣ containing U∞ and if pr : (AΣ)∗/U1 → (AΣ)∗/U2 denotes the pro-
jection then we can (and will) identify C((AΣ)∗/U2,M) with its image under the monomorphism
C((AΣ)∗/U2,M)→ C((AΣ)∗/U1,M), ϕ 7→ ϕ◦pr. With this convention we have Cc((AΣ)∗/U2,M) =
Cc((AΣ)∗/U1,M) ∩ C((AΣ)∗/U2,M).

Suppose that U1,U2,U3 ⊆ UΣ are closed subgroups containing U∞ with U3 ⊆ U1 ∩ U2. Consider
the Γ-equivariant pairing

(106) C((AΣ)∗/U1,M)× C((AΣ)∗/U2,Z) −→ C((AΣ)∗/U3,M), (ϕ,ψ) 7→ ϕ� ψ

defined by (ϕ�ψ)(aU3) = ψ(aU1) ·ϕ(aU2) for every a ∈ (AΣ)∗. Note that if ψ has compact support
then ϕ� ψ has compact support as well, i.e. (106) restricts to a pairing

(107) C((AΣ)∗/U1,M)× Cc((AΣ)∗/U2,Z) −→ Cc((AΣ)∗/U3,M).

The latter induces a cap-product pairing

(108) ∩ : H i(Γ, C((AΣ)∗/U1,M))×Hj(Γ, Cc((AΣ)∗/U2,Z)) −→ Hj−i(Γ, Cc((AΣ)∗/U3,M))

for every i, j ∈ Z.
For an ideal m ⊆ OF coprime to Σ there exists a canonical homology class (cf. [7], §3.1 11)

(109) ϑm ∈ Hn−1(Γ, Cc((AΣ)∗/UΣ
m ,Z)).

We recall its definition. By Dirichlet’s unit theorem the homology group Hn−1(Emc,+,Z) is a free
Z-module of rank one. Due to the chosen ordering of the embeddings F ↪→ R there is a canonical
choice of a generator ηcm ∈ Hn−1(Emc,+,Z). Let F ⊆ (AΣ)∗/UΣ

m be a fundamental domain for

the action of Γ/Emc,+ on (AΣ)∗/UΣ
m . Since Cc((AΣ)∗/UΣ

m ,Z) ∼= IndΓ
Emc,+

C(F ,Z) as Γ-modules, by
Shapiro’s Lemma we have

Hn−1(Γ, Cc((AΣ)∗/UΣ
m ,Z)) ∼= Hn−1(Emc,+, C(F ,Z)) ∼= C(F ,Z)⊗Hn−1(Emc,+,Z).

The homology class ϑm is the class that is mapped to 1F ⊗ ηcm under this isomorphism. If m = OF
then we write ϑ instead of ϑm.

For U2 = UΣ and U1 = U3 = U ⊆ UΣ taking the cap-product with ϑ in (108) yields the map

H0(Γ, C((AΣ)∗/U ,M)) −→ Hn−1(Γ, Cc((AΣ)∗/U ,M)), ρ 7→ ρ ∩ ϑ.

Now consider the special case A = Z = M (with trivial Γ-action) and U = UΣ
m where m ⊆ OF is an

ideal that is coprime to Σ. For a ∈ (AΣ)∗/UΣ
m let ιa : Z→ Cc((AΣ)∗/UΣ

m ,Z) be the homomorphism
that maps 1 to the characteristic function of the subset {a} ⊆ (AΣ)∗/UΣ

m . Together with the
inclusion Ecm,+ ↪→ Γ it induces a homomorphism

sha := corΓ
Ecm,+

◦ (ιa)∗ : Hn−1(Ecm,+,Z) ∼= Hn−1(Γ, Cc(A,Z))
(j!)∗−→ Hn−1(Γ, Cc((AΣ)∗/UΣ,Z)).

where A := Γ ·a ⊆ (AΣ)∗/UΣ
m is the Γ-orbit of a and j : A ↪→ (AΣ)∗/UΣ is the inclusion. Note that

if a1, . . . , ah is a system of representatives of the Γ = O ∗Σ,c-orbits in (AΣ)∗/UΣ
m then we have

(110) ϑm =

h∑
i=1

shai(ηcm).

11In loc. cit. we considered only the case m = OF
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Lemma 5.1. Let 1A ∈ H0(Γ, C((AΣ)∗/UΣ
m ,Z)) be the characteristic function of A. We have

1A ∩ ϑ = sha(ηcm).

Proof. Let ι : Cc((AΣ)∗/UΣ,Z) → Cc((AΣ)∗/UΣ
m ,Z) be the inclusion. It can be easily seen (by

using cor
Ec,+

Ecm,+
(ηc) = ηcm) that the induced homomorphism

ι∗ : Hn−1(Γ, Cc((AΣ)∗/UΣ,Z)) −→ Hn−1(Γ, Cc((AΣ)∗/UΣ
m ,Z))

maps ϑ to ϑm. If we denote the cap-product (108) for U1 = U2 = U3 = UΣ
m by ∩′ then together

with (110) we obtain

1A ∩ ϑ = 1A ∩′ ι∗(ϑ) = 1A ∩′ ϑm =
h∑
i=1

1A ∩′ shai(ηcm).

The assertion now follows from 1A∩′shai(ηcm) = shai(ηcm) = sha(ηcm) if ai ∈ A and 1A∩′shai(ηcm) =
0 if ai 6∈ A. �

Let S be a finite set of nonarchimedean places of F disjoint from Σ. In order to define homology
classes in Hn−1(Γ, Intloc,b(1+cOΣ,Z)) that are related to partial zeta values we recall the definition

of the (AΣ
f )∗-equivariant homomorphism

(111) ∆Σ
S,f : Cc((AΣ

f )∗/US,Σf ,Z) = Cc(F
∗
S × (AS,Σf )∗/US,Σf ,Z) −→ Cc(AΣ

f ,Z)

introduced in ([7], §5.3). Since (AS,Σf )∗/US,Σf is canonically isomorphic to the group of fractional

ideals IS,Σ := IS∪Σ that are coprime to S∪Σ, we can identify the space (AΣ
f )∗/US,Σf with F ∗S×IS,Σ.

There exists a canonical isomorphism (see [7], §2 or [6], Prop. 5.3)

Cc(F
∗
S ,Z)⊗ Z[IS,Σ] ∼= Cc(F

∗
S ,Z)⊗ Cc(IS,Σ,Z)

∼=−→ Cc(F
∗
S × IS,Σ,Z) = Cc((AΣ

f )∗/US,Σf ,Z).

Hence we can (and will) identify the source of (111) with the module Cc(F
∗
S ,Z)⊗ Z[IS,Σ]. Define

δS : Cc(F
∗
S ,Z) −→ Cc(FS ,Z), f 7→ f!(112)

δS,Σf : Z[IS,Σ] −→ Cc(AS,Σf ,Z),
∑

a∈IS,Σ
ma [a] 7→

∑
a∈IS,Σ

ma1âS,Σ(113)

where 1âS,Σ is the characteristic function of âS,Σ := âS∪Σ ⊆ AS,Σf . Furthermore let

(114) Cc(FS ,Z)⊗ Cc(AS,Σf ,Z) −→ Cc(AΣ
f ,Z), ϕS ⊗ ϕS 7→ (ϕS ◦ pr1) · (ϕS ◦ pr2)

where pr1 : (AΣ
f ) → FS , pr2 : AΣ

f → AS,Σf denote the projections. The map (111) is defined as the

composite of δS ⊗ δS,Σf with (114).

Note that the restriction of a locally constant map ϕ : AΣ
f → Z with compact support to the

subset 1 + cOΣ ⊆ AΣ
f is contained in Intloc,b(1 + cOΣ,Z) (in fact if we denote the restriction by f

then there exists a fractional ideal a ∈ IΣ such that f |x+ca is constant for every x ∈ 1 + cOΣ and
non-zero for only finitely many cosets x+ ca). Therefore

(115) Cc(AΣ
f ,Z) −→ Intloc,b(1 + cOΣ,Z), ϕ 7→ ϕ|1+cOΣ

is a well-defined Γ-equivariant homomorphism. By abuse of notation we denote the composite of
(111) and (115) by

(116) ∆Σ
S,f : Cc((AΣ

f )∗/US,Σf ,Z) −→ Intloc,b(1 + cOΣ,Z)
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as well. Finally, we incorporate the archimedean places as well, i.e. we extend (116) to a Γ-
equivariant homomorphism

(117) ∆Σ
S : Cc((AΣ)∗/US,Σ,Z) −→ Intloc,b(1 + cOΣ,Z)(ε)

as follows. For a function ϕ : (AΣ)∗/US,Σ = (AΣ
f )∗/US,Σf ×F ∗∞/U∞ → Z with compact support and

x∞ ∈ F ∗∞/U∞ we let ϕ( · , x∞) denote the map (AΣ
f )∗/US,Σf → Z, x 7→ ϕ(x, x∞). We define (117)

by

∆Σ
S (ϕ) =

∑
x∞U∞∈F ∗∞/U∞

ε(x∞) ·∆Σ
S,f (ϕ( · , x∞U∞)).

where ε(x∞) =
∏
v|∞ sign(xv) for x∞ = (xv)v|∞ ∈

∏
v|∞ F

∗
v .

More generally, if U ⊆ UΣ is a closed subgroup containing US,Σ and M is an abelian group then
we define

(118) ∆Σ
S : Cc((AΣ)∗/U ,M) −→ Intloc,b(1 + cOΣ,Z)(ε)⊗M

as follows. Note that we can identify the source with the module Cc((AΣ)∗/U ,Z) ⊗M and that
Cc((AΣ)∗/U ,Z) can be viewed naturally as a submodule of Cc((AΣ)∗/US,Σ,Z). Therefore we can
write elements of the source of (118) as finite sums

∑r
i=1 ϕi⊗mi with ϕ1, . . . , ϕr ∈ Cc((AΣ)∗/U ,Z)

and m1, . . . ,mr ∈M and define

(119) ∆Σ
S

(
r∑
i=1

ϕi ⊗mi

)
:=

r∑
i=1

∆Σ
S (ϕi)⊗mi.

Note that if M is a Γ-module then (118) is Γ-equivariant. For M = Intloc,b(1 + cOΣ, A) composing
(118) with the map

(120) Intloc,b(1 + cOΣ,Z)(ε)⊗ Intloc,b(1 + cOΣ, A)→ Intloc,b(1 + cOΣ, A)(ε), f1 ⊗ f2 7→ f1 · f2

induces a Γ-equivariant homomorphism

(121) ∆̃Σ
S : Cc((AΣ)∗/U , Intloc,b(1 + cOΣ, A)) −→ Intloc,b(1 + cOΣ, A)(ε).

Remark 5.2. We recall the dependence of the map (119) on the set S (compare [7], Remark 5.5).

Let v ∈ S, put S′ = S \ {v} and assume that U contains US
′,Σ. Then we have

∆Σ
S (ϕ) = ∆Σ

S′(ϕ− [$v] · ϕ)

for every ϕ ∈ Cc((AΣ)∗/U ,M). Here $v ∈ F ∗v is a uniformizer and [$v] ∈ (AΣ)∗ denotes the adele
whose component at v is a uniformizer $v ∈ F ∗v and whose other components are = 1. Similarly,
for the map (121) we obtain

(122) ∆̃Σ
S (ϕ) = ∆̃Σ

S′(ϕ− [$v] · ϕ)

for every ϕ ∈ Cc((AΣ)∗/U , Intloc,b(1 + cOΣ, A)).

For open subgroups U1,U2 ⊆ UΣ with US,Σ ⊆ U1,U2 we consider the Γ-equivariant pairing

(123) 〈 · , · 〉S : C((AΣ)∗/U1, Intloc,b(1 + cOΣ, A))× Cc((AΣ)∗/U2,Z) −→ Intloc,b(1 + cOΣ, A)(ε)

defined as the composition of (107) (for U3 := U1 ∩ U2 and M = Intloc,b(1 + cOΣ, A)) with the

homomorphism ∆̃Σ
S (for U = U3), i.e. we have

〈ϕ,ψ〉S = ∆̃S(ϕ� ψ)
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for ϕ ∈ C((AΣ)∗/U1, Intloc,b(1 + cOΣ, A)) and ψ ∈ Cc((AΣ)∗/U2,Z). The pairing (123) induces for
every i, j ∈ Z a cap-product pairing

∩ : H i(Γ, C((AΣ)∗/U1, Intloc,b(1 + cOΣ, A)))×Hj(Γ, Cc((AΣ)∗/U2,Z))(124)

−→ Hj−i(Γ, Intloc,b(1 + cOΣ, A)(ε)).

In particular for U1 = U2 = UΣ
m ⊆ UΣ and i = 0 taking the cap-product with the homology class

sha(ηcm) associated to a point a ∈ (AΣ)∗/UΣ
m yields a map

H0(Γ, C((AΣ)∗/UΣ
m , Intloc,b(1+cOΣ, A))) −→ Hn−1(Γ, Intloc,b(1+cOΣ, A)(ε)), ϕ 7→ ϕ∩ sha(ηcm).

Lemma 5.3. For ϕ ∈ H0(Γ, C((AΣ)∗/UΣ
m , Intloc,b(1 + cOΣ, A))) we have

ϕ ∩ sha(ηcm) = corΓ
Ecm,+

(ϕ(a) ∩ ηcm).

Proof. Let eva : C((AΣ)∗/UΣ
m , Intloc,b(1 + cOΣ,Z)) → Intloc,b(1 + cOΣ,Z), ϕ 7→ ϕ(a) denote the

evaluation map at a. We have

〈ϕ, ιa(m)〉 = m · eva(ϕ)

for every ϕ ∈ C((AΣ)∗/UΣ
m , Intloc,b(1 + cOΣ,Z)) and m ∈ Z. Standard functorial properties of the

cap-product with respect to restrictions and corestrictions therefore imply

corΓ
Ecm,+

((
(eva)∗ ◦ resΓ

Ecm,+
(κ)
)
∩ ηcm

)
= κ ∩ sha(ηcm)

for every κ ∈ H i(Γ, C((AΣ)∗/UΣ
m , Intloc,b(1 + cOΣ, A))). �

Remarks 5.4. (a) For the applications in section 6 we need to address the dependence of the

pairing (123) on the set S. Let v ∈ S, put S′ = S \ {v} and assume that US
′,Σ ⊆ U3 = U1 ∩U2. By

(122) we have

(125) 〈ϕ,ψ〉S = 〈[$v] · ϕ,ψ − [$v] · ψ〉S′ + 〈ϕ− [$v] · ϕ,ψ〉S′

for every ϕ ∈ C((AΣ)∗/U1, Intloc,b(1 + cOΣ, A)) and ψ ∈ Cc((AΣ)∗/U2,Z).

(b) We also need a more concrete description of the pairing (123) in the case U := U1 ⊆ U2 = UΣ.
For that we fix an open subgroup V ⊆ US such that V × US,Σ ⊆ U . For that we write elements of

(AΣ)∗ as triples a = (a1, a2, a∞) with a1 = (av)v∈S ∈ F ∗S , a2 = (av)v 6∈S∪Σ,v-∞(AS,Σf )∗ and a∞ ∈ F ∗∞.

Let V ⊆ US be an open subgroup with V × US,Σ ⊆ U . We have

∆Σ
S (1a(V×US,Σ)) = 1Xa,V,S

where Xa,V,S denotes the set

Xa,V,S = {x ∈ 1 + cOΣ | x ∈ a1V and ordv(x) ≥ ordv(av) ∀ v 6∈ S ∪ Σ ∪ S∞}

Note that if a ∈ IΣ denotes the fractional ideal associated to the idele (a1, a2) ∈ (AΣ
f )∗ then we

have Xa,V,S ⊆ a ∩ 1 + cOΣ. Since

ϕ� ψ =
∑

a(V×US,Σ)∈(AΣ)∗/(V×US,Σ)

ψ(aUΣ)1a(V×US,Σ) ⊗ ϕ(aU)

we get

(126) 〈ϕ,ψ〉S =
∑

a(V×US,Σ)∈(AΣ)∗/(V×US,Σ)

ψ(aUΣ) 1Xa,V,S · ϕ(aU)

�
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Now we consider (124) for U1 = U ⊆ U2 = UΣ. Taking the cap-product with ϑ yields a map

(127) H0(Γ, C((AΣ)∗/U , Intloc,b(1 + cOΣ, A))) −→ Hn−1(Γ, Intloc,b(1 + cOΣ, A)(ε)), ρ 7→ ρ ∩ ϑ.
We define certain canonical elements in the source of (127). For that put N := NF/Q : F → Q and

let N = NΣ : (AΣ)∗ → Q∗ be the idele norm character given by N((av)v) =
∏
v 6∈Σ Nv(av) where

Nv(av) =

{
|av|−1

v if v is nonarchimedean,
sign(av) if v is archimedean.

For an idele a = (av)v 6∈Σ ∈ (AΣ)∗ let a = {x ∈ OΣ | ordv(x) ≤ ordv(av)for every v 6∈ Σ, v -∞} be
the associated fractional ideal. Note that N(a) = ±N(a) and N(a) = N(a) if av > 0 for all v - ∞.
Moreover if a = γ ∈ O ∗Σ ⊆ (AΣ)∗ then we have N(a) = N(γ). Consider the map

(128) N : (AΣ)∗/UΣ −→ Intloc,b(1 + cOΣ,Z), aUΣ 7→ N(a)−11a∩1+cOΣ
·N.

If we identify the group (AΣ)∗/UΣ with IΣ × F ∗∞/U∞ and correspondingly write its elements as
pairs (a, a∞U∞) then we have

(129) N (a, a∞U∞) = ε(a∞) N(a)−11a∩1+cOΣ
·N

with ε(a∞) =
∏
v|∞ sign(av) for a∞ = (av)v|∞ ∈

∏
v|∞ F

∗
v .

Since N(a)−1N(x) ∈ Z for every x ∈ a we see that the right hand side of (129) lies indeed in
Intloc,b(1 + cOΣ,Z). The map (128) is Γ-equivariant because of

(130) N (γ · aUΣ) = N(γa)−1 · 1γa∩1+cOΣ
·N = N(a)−1γ · (1a∩1+cOΣ

·N) = γN (aUΣ)

for every γ ∈ Γ and aUΣ ∈ (AΣ)∗/UΣ. It follows that we can view N k for k ∈ Z≥0 as an element
of H0(Γ, C((AΣ)∗/UΣ, Intloc,b(1 + cOΣ,Z))). We remark that for k = 0 the map N 0 : (AΣ)∗/UΣ →
Intloc,b(1 + cOΣ,Z) is given by N 0(aUΣ) = 1a∩1+cOΣ

.
Let m ⊆ OF be again an ideal coprime to Σ. For a ray class A ∈ Icm/Pcm and k ∈ Z≥0 we

introduce a certain homology class

(131) %kA = %kA,S,c ∈ Hn−1(Γ, Intloc,b(1 + cOΣ,Z)(ε))

as follows. We identify the ray class group Icm/Pcm with the idele class group (AΣ)∗/UΣ
mΓ, so that

we can (and will) view A as a Γ-orbit in (AΣ)∗/UΣ
m . The class (131) is given by

%kA := (N k ∪ 1A) ∩ ϑ ∈ Hn−1(Γ, Intloc,b(1 + cOΣ,Z)(ε))

where 1A ∈ H0(Γ, C((AΣ)∗/UΣ
m ,Z)) denotes the characteristic function of A and where we view N k

for k ∈ Z≥0 as an element of H0(Γ, C((AΣ)∗/UΣ, Intloc,b(1+cOΣ,Z))).12 Moreover the cup-product

N k ∪ 1A is induced by the pairing (106) for M = Intloc,b(1 + cOΣ,Z).

Theorem 5.5. We have

(132) Eisb,c ∩%kA = (−1)n−1 N(b) ζ(cm,A,−k) + (−1)n N(b)−k ζ(cm,AB,−k)

where B = [b] ∈ Icm/Pcm denotes the ray class of b.

For the proof we choose a fractional ideal a ⊆ OF coprime to S ∪ Σ such that a−1 is a repre-
sentative of A. If we identify (AΣ)∗/UΣ

m with the product F ∗S/Um,S × IS,Σ × F ∗∞/U∞ then A is the
Γ/Ecm,+-orbit of the element

a := (1, a−1, 1) ∈ F ∗S/Um,S × IS,Σ × F ∗∞/U∞ = (AΣ)∗/UΣ
m .

Let N0 ∈ Int(1 + cma−1,Z) denote the polynomial function N0(x) := N(a) N(x) for x ∈ 1 + cma−1.
Since N(ε) = 1 for every ε ∈ Ecm,+ we have N0 ∈ H0(Ecm,+, Int(1 + cma,Z)).

12Note that for k = 0 the map N 0 : (AΣ)∗/UΣ → Intloc,b(1 + cOΣ,Z) is given by N 0(aUΣ) = 1a∩1+cOΣ where a

denotes again the fractional ideal associated to aUΣ.
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Lemma 5.6. We have %kA = cor(N k
0 ∩ ηcm).13

Proof. Note that N k(a) = j(N k
0 ). Together with Lemmas 5.1 and 5.3 we obtain

%kA = (N k ∪ 1A) ∩ ϑ = N k ∩ (1A ∩ ϑ) = N k ∩ sha(ηcm) = corΓ
Ecm,+

(N (a)k ∩ ηcm)

= corΓ
Ecm,+

(j∗(N k
0 ) ∩ ηcm) = cor(N k

0 ∩ ηcm).

�

Proof of Theorem 5.5. By (105) and Lemma 5.6 we have

Eisb,c ∩%kA = Eisb,c ∩ cor(N k
0 ∩ ηcm) = res(Eisb,c) ∩ (N k

0 ∩ ηcm)

= Eiscma−1,b(t0) ∩ (N k
0 ∩ ηcm) = N k

0 ∩ (Eiscma−1,b(t0) ∩ ηcm).

To finish the proof we recall the relation between Eiscma−1,b(t0)∩ηcm ∈ H0(Ecm,+,Dpol(1+cma−1, R))
and values partial zeta functions from ([1], §5). For that we enlarge R, i.e. we pass to the complex
numbers R = C.

To rephrase the result of Beilinson, Kings and Levin suitable for our framework we fix an ideal
n ⊆ OF coprime to cm (in the formula (133) below n will be either a or ab). Put L = cmn−1,
H = 1 + L, Γ0 = Ecm,+ and t0 = t + L ∈ F∞/L. As in ([1], §5) we consider the following
composition of isomorphisms

(133) Φn : C[[w]]
∼=−→ Dpol(L,C)Γ0

∼=−→ Dpol,L(1 + L,C)Γ0 .

The first isomorphism is given as follows. We view the embeddings ξ1, . . . , ξn : F → R as polynomial
functions on L, i.e. we have (ξi)|L ∈ Int(L,C). In fact the powers ξm, m ∈ (Z≥0)n form a C-basis
of Int(L,C). As in Example 2.4 for i = 1, . . . , n let zi ∈ Dpol(L,C) be given by zi(ξ

m) = 1 if

m = ei and zi(ξ
m) = 0 if m 6= ei. If we put w := z1 · . . . · zn then we have Dpol(L,C)Γ0 = C[[w]]

(see [1], Lemma 5.4). Now the isomorphism C[[w]] ∼= Dpol(L,C)Γ0 is induced by the projection
Dpol(L,C) → Dpol(L,C)Γ0 . For the second isomorphism in (133) note that a polynomial function

f : L → C extends uniquely to a polynomial function f̃ : Z + L → C. We obtain an isomorphism
Int(L,C)→ IntL(1+L,C), f 7→ f̃ |1+L, hence dually an isomorphism Dpol,L(1+L,C)→ Dpol(L,C).
Passing to Γ0-coinvariants yields the isomorphism Dpol(L,C)Γ0

∼= Dpol,L(1 + L,C)Γ0 .
By ([1], 3.44, 5.6 and (5.10)) we have

Eiscma−1,b(t0) ∩ ηcm = (−1)n−1 N(b) Φa

 ∞∑
j=0

N(a)−jζ(cm,A,−j) wj

(j!)n

(134)

+(−1)n Φab

 ∞∑
j=0

N(ab)−jζ(cm,AB,−k)
wj

(j!)n

 .

Note that the second summand is initially an element of Dpol(1+cm(ab)−1,C)Γ0 . However since we
work with complex coefficients we can identify it canonically with the group Dpol(1 + cma−1,C)Γ0 .

To finish the proof note that by (9) we have

N k
0 ∩ Φa(w

j) = N k
0 ∩ Φab(w

j) =

{
N(a)k(k!)n if k = j,

0 otherwise.

We conclude

Eisb,c ∩%kA = N k
0 ∩ (Eiscma−1,b(t0) ∩ ηcm)

= (−1)n−1 N(b)ζ(cm,A,−k) + (−1)n N(b)−kζ(cm,AB,−k).

13Recall that cor has been defined in (103).
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Now we will give formulas for the values of the partial zeta functions ζS(σ, s) and the Stickelberger
elements ΘS,q(K/F, s) (see (1) and (99)) at non-positive integers in terms of a cap-product of an
Eisenstein class with certain homology classes. For that we make specific choices for the coprime
ideals b and c of OF .

To fix ideas let K/F be a finite abelian extension with Galois group G. Let p be a fixed
nonarchimedean place of F and let S be a finite and set of nonarchimedean places of F with p 6∈ S
and such that S′ = S∪{p} contains all places that are ramified inK/F . Let f be the nonarchimedean
part of the conductor of L/K. For b we choose any non-trivial ideal of OF coprime to S′ and for
c we choose a sufficiently high power of p. Namely if pf is the exact power of p that divides f (the
case f = 0 is allowed) then we put c := pm where m is any integer ≥ max(f, n+ 1).

For σ ∈ G and k ∈ Z≥0 we define

%kσ = %kσ,S,c := (N k ∪ 1rec−1(σ)) ∩ ϑ ∈ Hn−1(Γ, Intloc,b(1 + pmOΣ,Z)(ε))

where Σ denotes again the set of all prime factors of bc and where 1rec−1(σ) ∈ H0(Γ, C((AΣ)∗/US,Σ,Z))

is the characteristic function of the preimage of σ under the reciprocity map rec : (AΣ)∗/US,Σ → G.

Corollary 5.7. We have

(135) Eisb,c ∩%kσ = (−1)n−1 N(b) ζS′(σ,−k) + (−1)n N(b)−k ζS′(σσb,−k).

Recall that σb denotes the image of b under the Artin map IS → G.

Proof. We choose an ideal m ⊆ OF whose set of prime factors is equal to S and so that cm is a
multiple of f (hence K ⊆ F cm). If rec : Icm/Pcm → Gal(F cm/F ) denotes the reciprocity isomorphism
then we have

%kσ =
∑
A

%kA

where the sum is taken over the ray classes A ∈ Icm/Pcm with rec(A)|K = σ. Thus the assertion
follows from (98) and (132). �

Finally, we give a formula similar to (135) for the Stickelberger elements ΘS′,q(K/F,−k). Recall
that q denotes an additional place not contained in S. Now we choose b := q so that Σ = {p, q}.
Moreover if q denotes the characteristic of the residue field of q then we can choose the coefficient
ring R to be Z[1/q]. As in ([7], §5.4) by composing the reciprocity map rec : (AΣ)∗/US,Σ → G with
the inclusion G ↪→ Z[G] we view it as a homomorphism

(136) rec : (AΣ)∗/US,Σ −→ Z[G].

The fact that Γ lies in its kernel implies rec ∈ H0(Γ, C((AΣ)∗/US,Σ,Z[G])). For k ∈ Z≥0 we define

(137) %kK/F = %kK/F,S,c,q := (N k ∪ (inv ◦ rec)) ∩ ϑ ∈ Hn−1(Γ, Intloc,b(1 + pmOΣ,Z[G])(ε))

where inv denotes the involution Z[G]→ Z[G],
∑

σ∈G nσ[σ] 7→
∑

σ∈G nσ[σ−1].

Corollary 5.8. With Eis := Eisq,pm we have

(138) Eis∩%kK/F = (−1)n N(q)−k [σq] ·ΘS′,q(−k).

Note that (138) is an equality in the group ring Z[1/q][G].

Proof. Under the canonical isomorphism

Hn−1(Γ, Intloc,b(1 + pmOΣ,Z[G])(ε)) ∼= Hn−1(Γ, Intloc,b(1 + pmOΣ,Z)(ε))⊗ Z[G]

=
⊕
σ∈G

Hn−1(Γ, Intloc,b(1 + pmOΣ,Z)(ε))⊗ [σ]
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the class (137) decomposes as %kK/F =
∑

σ∈G %
k
σ−1 ⊗ [σ]. Together with (135) we deduce

Eis∩%kK/F = (−1)n
∑
σ∈G

(
N(q)−kζS′(σ

−1σq,−k)−N(q)ζS′(σ
−1,−k)

)
[σ]

= (−1)n N(q)−k [σq] ·ΘS′,q(−k).

�

6. Divisibility properties of Stickelberger elements

As at the end of last section we let S be a finite set of nonarchimedean places of F of cardinality
r and let Σ = {p, q} where p, q are two distinct fixed nonarchimedean places of F not contained in
S. As before we put Γ := O ∗Σ,c and consider Z[1/q]-coefficients where q is the residue characteristic

of q. We also put c = pm (for m sufficiently large). The aim of this section is to prove Theorem 1.1.
In order to obtain this refinement of Corollary 5.8 we work in a more general framework than in
the last section, namely we take the cap-product of our adelic Eisenstein class Eis := Eisq,pm with
certain hyperhomology groups and we work with more general characters than the reciprocity map
(136).

To begin with let R be an arbitrary Z[1/q]-algebra and let U be an open subgroup of (AΣ)∗ that
contains US,Σ. For this data we consider the trilinear map

βS : Dlpol(1+pmOΣ,Z[1/q])(ε)×C((AΣ)∗/U , Intloc,b(1+pmOΣ, R))×Cc((AΣ)∗/UΣ,Z)→R,(139)

(µ,Ψ, ϕ) 7→ βS(µ,Ψ, ϕ) :=

∫
1+pmOΣ

〈Ψ, ϕ〉S(x) dµ(x).

Here 〈Ψ, ϕ〉S ∈ Intloc,b(1 + pmOΣ, R) denotes the image of the pair (Ψ, ϕ) under (123). Note that
(139) is Γ-equivariant, i.e. we have

(140) βS(γµ, γΨ, γϕ) = βS(µ,Ψ, ϕ)

for every γ ∈ Γ.
Now fix k ∈ Z≥0 and let

χ : (AΣ)∗/U −→ R∗

be a homomorphism. We define

χN k : (AΣ)∗/U −→ Intloc,b(1 + pmOΣ, R), aU 7→ (N k)(aUΣ)⊗ χ(aU)

and consider the map (139) for Ψ = χN k fixed, i.e. we consider the pairing

(141) 〈 · , · 〉χ,k,S := βS( · , χN k, · ) : Dlpol(1 + pmOΣ,Z[1/q])(ε)× Cc((AΣ)∗/UΣ,Z) −→ R.

Thus for µ ∈ Dlpol(1 + pmOΣ,Z[1/q])(ε) and ϕ ∈ Cc((AΣ)∗/UΣ,Z) we have

〈µ, ϕ〉χ,k,S := βS(µ, χN k, ϕ) =

∫
1+pmOΣ

〈χN k, ϕ〉S(x) dµ(x).

Note that (140) and (130) implies that 〈γµ, γϕ〉χ,k,S = χ(γ) · 〈ϕ, µ〉χ,k,S for every γ ∈ Γ. Therefore
(141) induces cap-product pairings

∩χ,k,S : H i(Γ,Dlpol(1 + pmOΣ,Z[1/q])(ε))×Hj(Γ, Cc((AΣ)∗/UΣ,Z)) −→ Hj−i(Γ, R(χ))

for i, j ∈ Z. In particular for i = j = n− 1 we can consider the homology class

Eis∩χ,k,S ϑ ∈ H0(Γ, R(χ))

For a place v of F with v 6= p, q we let χv : F ∗v → R∗ be the local component of χ at v. Our
main technical result is
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Theorem 6.1. Let {av}v∈S∪S∞ be a collection of ideals of R that satisfies following properties

(i) For v ∈ S the local component χv is unramified modulo av
14 and χv($v) ≡ N(v)k mod av.

(ii) For v ∈ S∞ we have χv(−1) ≡ (−1)k mod av.

Put R = R/
∏
v∈S∪S∞ av and let π : R→ R be the projection. Then we have

(142) π∗ (Eis∩χ,k,S ϑ) = 0 in H0(Γ, R(χ)).

The proof of Theorem 6.1 is given in several steps. It uses ideas introduced in ([20], §3), ([7],
§3) and [10]. In order to deal with the vanishing of the left hand side of (142) modulo the product
over the infinite places

∏
v∈S∞ av we need the following15

Lemma 6.2. The image of the pairing (141) is contained in
∏
v∈S∞ av.

Proof. By shrinking U if necessary we may assume that it is of the form U = Uf × U∞ where Uf
is an open subgroup of (AΣ

f )∗ with US,Σf ⊆ Uf ⊆ UΣ
f . The first key ingredient in the proof is the

formula

(143) 〈Ψ, ϕ〉S = 〈Pf,ε(Ψ), Pf (ϕ)〉S,f
for Ψ ∈ C((AΣ)∗/U , Intloc,b(1 + cOΣ, R)) and ϕ ∈ Cc((AΣ)∗/UΣ,Z). We explain the terms on the
right hand side of (143). Firstly, we define the map Pf,ε as

Pf,ε : C((AΣ)∗/U , Intloc,b(1 + cOΣ, R)) −→ C((AΣ
f )∗/Uf , Intloc,b(1 + cOΣ, R))(ε)(144)

Ψ 7→ Pf,ε(Ψ) =
∑

x∞U∞∈F ∗∞/U∞

ε(x∞) ·Ψ( · , x∞U∞)

and the map Pf by

Pf : Cc((AΣ)∗/UΣ,Z) −→ Cc((AΣ
f )∗/UΣ

f ,Z), ϕ 7→ Pf (ϕ) =
∑

x∞U∞∈F ∗∞/U∞

ϕ( · , x∞U∞).

The pairing

〈 · , · 〉S,f : C((AΣ
f )∗/Uf , Intloc,b(1 + cOΣ, R))(ε)× Cc((AΣ

f )∗/UΣ
f ,Z) −→ Intloc,b(1 + pmOΣ, R)(ε)

is defined similarly to (123) by using the map ∆Σ
S,f instead of ∆Σ

S in its definition. More concretely
we define

(145) ∆̃Σ
S,f : Cc((AΣ

f )∗/Uf , Intloc,b(1 + pmOΣ, R))(ε) −→ Intloc,b(1 + pmOΣ, R)(ε).

similar as (121) by replacing in its definition the map (117) with the map (116). We then define
(6) as the composite of the obvious pairing

C((AΣ
f )∗/Uf , Intloc,b(1 + cOΣ, R))× Cc((AΣ

f )∗/UΣ
f ,Z) −→ Cc((AΣ

f )∗/Uf , Intloc,b(1 + cOΣ, R))

with (145).
Secondly, we show that Pf,ε(Ψ) has values in Intloc,b(1 + cOΣ,

∏
v∈S∞ av). Let a = (av)v 6∈Σ∪S∞ ∈

(AΣ
f )∗ be an idele and let a ∈ IΣ be the associated fractional ideal. We have

Pf,ε(χN k)(aUf ) = N(a)−k1a∩1+pmOΣ
·Nk ⊗

χf (aUf ) ·
∑

a∞U∞∈F ∗∞/U∞

χ∞(a∞)ε(a∞)k+1


14By this we mean χv(u) ≡ 1 mod av for every u ∈ Uv
15See also [7], Prop. 3.8 for a related argument.
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where χf (resp. χ∞) denotes the nonarchimedean (resp. the archimedean) component of χ. Since∑
a∞U∞∈F ∗∞/U∞

χ∞(a∞)ε(a∞)k+1 =
∏
v∈S∞

(1 + χv(−1)(−1)k+1) ∈
∏
v∈S∞

av

we get

(146) Pf,ε(χN k)(aUf ) ∈ Intloc,b(1 + cOΣ,Z)⊗
∏
v∈S∞

av.

Now using (143) and (146) we conclude

〈µ, ϕ〉χ,k,S =

∫
1+pmOΣ

〈Pf,ε(χN k), Pf (ϕ)〉S,f (x) dµ(x) ∈
∏
v∈S∞

av.

�

For the proof of Theorem 6.1 we need further preparation. To begin with we recall the definition
of the homology class

(147) ϑS ∈ Hn+r−1(Γ, Cc((AS,Σ)∗/US,Σ,Z)).

introduced in ([7], §3). Its definition is similar to that of the class (109). One only has to replace
the group E+ with the group ES,+ of totally positive S-units of F (which is free-abelian of rank
n+ r − 1) and use the fact that

Hn+r−1(Γ, Cc((AS,Σ)∗/US,Σ,Z)) ∼= C(F ,Z)⊗Hn+r−1(ES,+,Z)

where now F denotes a fundamental domain for the action of Γ/ES,+ on (AS,Σ)∗/US,Σ. The class

ϑS corresponds to 1F ⊗ ηS under this isomorphism where ηS denotes a generator of the group
Hn+r−1(ES,+,Z). In order to have a canonical choice for ηS we have to fix an ordering v1, . . . , vr
of the primes in S.

We will reinterpret the class (147) as a Γ-hyperhomology class in degree n − 1. For that we
introduce the following (AΣ)∗-modules. Given a subset S1 ⊆ S define

Cc(S1,Z) := Cc(FS1 × (AS1,Σ)∗/US1,Σ,Z)US1 = Cc(FS1 × (AS1,Σ
f )∗ × F ∗∞/U∞,Z)US1

×US1,Σ
f

i.e. Cc(S1,Z) consists of locally constant functions ϕ : FS1 × (AS1,Σ
f )∗ ×F ∗∞/U∞ → Z with compact

support such that ϕ(u1x1, u2x2, x3U∞) = ϕ(x1, x2, x3U∞) for every (x1, x2, x3) ∈ FS1 × (AS1,Σ)∗ ×
F ∗∞ and (u1, u2) ∈ US1 × U

S1,Σ
f . Note that if S2 ⊆ S1 then FS2 × (AS2,Σ

f )∗ × F ∗∞/U∞ is an open

subset of FS1 × (AS1,Σ
f )∗ × F ∗∞/U∞. Hence we can view Cc(S2,Z) as a submodule of Cc(S1,Z),

namely Cc(S2,Z) consists of those ϕ ∈ Cc(S1,Z) with supp(ϕ) ⊆ FS2 × (AS2,Σ
f )∗ × F ∗∞/U∞.

Remark 6.3. Let S1 ⊆ S be a subset, let v ∈ S1 and let ϕ ∈ Cc(S1,Z). Then the function ϕ−[$v]ϕ

vanishes at every element x ∈ FS1 × (AS1,Σ
f )∗ × F ∗∞/U∞ whose v-component is = 0, i.e. we have

ϕ − [$v]ϕ ∈ Cc(S2,Z) with S2 := S1 \ {v}. 16 Thus if we extend (AΣ)∗-action on Cc(S1,Z) to an
action of the group ring Z[(AΣ)∗] then we have (1− [$v]) · Cc(S1,Z) ⊆ Cc(S2,Z). Hence we get

(148)
∏
v∈S1

(1− [$v]) · Cc(S1,Z) ⊆ Cc(∅,Z) = Cc((AΣ)∗/UΣ,Z).

�

16Recall that $v is a prime element of Ov.
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We consider the bounded complex of Γ-modules

C• : 0 −−−−→ C0
∂0−−−−→ C−1

∂−1−−−−→ . . . −−−−→ C1−r
∂1−r−−−−→ C−r −−−−→ 0

defined by

C−i =
⊕

S1 ⊆ S
#S1 = i

Cc(S1,Z)

for i ∈ {0, 1, . . . , r} and Ci = 0 if i 6∈ {−r, . . . ,−1, 0}. The boundary map ∂−i : C−i → C−i−1 for
i ∈ {0, 1, . . . , r − 1} is defined as follows: if S2 and S1 are subsets of S of cardinality i and i + 1
respectively then the (S2, S1)-component of ∂−i is = 0 if S2 6⊂ S1 and is (−1)ν · incl : Cc(S2,Z) ↪→
Cc(S1,Z) if S2 ⊆ S1 and S1 = {vj0 , . . . , vji}, S2 = S1 \ {vjν} with 1 ≤ j0 < . . . < ji ≤ r.

For the homology of C• and hyperhomology of Γ with coefficients in C• we have

Lemma 6.4. For every i ∈ Z we have

(a) Hi(C•) =

{
Cc((AS,Σ)∗/US,Σ,Z) if i = −r,

0 otherwise.

(b) Hi(Γ, C•) = Hi+r(Γ, Cc((AS,Σ)∗/US,Σ,Z)).

Proof. (a) For a nonarchimedean place v we consider the short exact sequence

0 −−−−→ Cc(F
∗
v ,Z)

ϕ7→ϕ!−−−−→ Cc(Fv,Z)
ϕ7→ϕ(0)−−−−−→ Z −−−−→ 0

(compare [7], §3.1). Note that it remains exact if we pass to Uv-invariants. Thus if let Cv• be the
complex [Cc(F

∗
v ,Z)Uv ↪→ Cc(Fv,Z)Uv ] concentrated in degree 0 and −1 then its homology vanishes

except in degree −1 where it is = Z. Now the assertion follows from the fact that C• is isomorphic
to the complex (

⊗r
i=1 Cvi• )⊗ Cc((AS,Σ)∗/US,Σ,Z).

(b) There is a homological spectral sequences (see [23], 5.7.8)

E2
ij = Hi(Γ,Hj(C•)) =⇒ Ei+j = Hi+j(Γ, C•).

By (a) it degenerates and we have Ei ∼= E2
i+r,−r. �

By the above Lemma we can view (147) as a hyperhomology class

ϑS ∈ Hn−1(Γ, C•) = Hn+r−1(Γ, Cc((AS,Σ)∗/US,Σ,Z)).

Remark 6.5. Note that C0 = Cc((AΣ)∗/UΣ,Z). Thus if we view Cc((AΣ)∗/UΣ,Z) as a complex
concentrated in degree 0 and if ι : C• → Cc((AΣ)∗/UΣ,Z) denotes the forgetful chain map (i.e. it is
the identity in degree 0) then it induces a homomorphism

(149) Hn−1(Γ, C•) −→ Hn−1(Γ, Cc((AΣ)∗/UΣ,Z)).

Lemma 3.1 of [7] can be rephrased by stating that the class ϑS is mapped to ϑ under the homo-
morphism (149).

The following Lemma is the key technical result we use to deal with the places in S in (142).

Lemma 6.6. Let v ∈ S and let S0 = S \ {v}. Assume that

(150) χv(x) = |x|−kv ∀x ∈ Ov, x 6= 0.

Then we have
〈µ, ϕ〉χ,k,S = βS0(µ, [$v] · (χN k), (1− [$v])ϕ)

for every µ ∈ Dlpol(1 + pmOΣ,Z[1/q]) and ϕ ∈ Cc((AΣ)∗/UΣ,Z).17

17Recall that $v is a prime element of Ov.
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Note that property (150) is equivalent to require that χv is unramified and that χv($v) = N(v)k

holds.

Proof. We may assume that U = V × US0,Σ for some open subset V ⊆ US0 . By (125) we have

(151) 〈χN k, ϕ〉S = 〈[$v] · (χN k), (1− [$v])ϕ〉S0 + 〈χN k − [$v] ·
(
χN k

)
, ϕ〉S0 .

Thus to prove (6.6) it suffices to verify

(152) 〈χN k − [$v] ·
(
χN k

)
, ϕ〉S0 = 0

for every ϕ ∈ Cc((AΣ)∗/UΣ,Z). In fact by Remark 5.4 (b) (and in particular (126)) it is enough to
show that

(153) 1Xa,V,S0
·
(
χN k − [$v] · (χN k)

)
(a) = 0

for every a ∈ (AΣ)∗.
Let r denote the prime ideal of OF corresponding to the place v and put % := χv($v) so that

% = N(r)k ∈ Z · 1R ⊆ R. Fix a = (a1, a2) ∈ (AΣ)∗ = F ∗v × (Av,Σ)∗ and put ν = ordv(a1) so that
χv(a1) = %ν . Let χ2 : (Av,Σ)∗ → R∗ be the composition

(Av,Σ)∗ ∼= 1× (Av,Σ)∗ ↪→ F ∗v × (Av,Σ)∗ = (AΣ)∗
pr−→ (AΣ)∗/U −→ R∗.

We have χ(aU) = %ν · χ2(a2) and by (129)

N (aUΣ) = ε(a∞) N(rνa2)−11rνa2∩1+pmOΣ
·N.

Here a2 ∈ I{v}∪Σ denotes the fractional ideal associated to a2 and a∞ ∈ F ∗∞ its archimedean
component. Because of % = N(r)k we get

(χN k)(aU) = ε(a∞)k ·
(

N(rνa2)−k1rνa2∩1+pmOΣ
·Nk

)
⊗ (%ν · χ2(a2))(154)

= ε(a∞)k ·
(

N(rν−1a2)−k1rνa2∩1+pmOΣ
·Nk

)
⊗ (%ν−1 · χ2(a2)).

Applying (154) to the adele a[$v]
−1 yields

(155)
(

[$v] · (χN k)
)

(a) = ε(a∞)k ·
(

N(rν−1a2)−k1rν−1a2∩1+pmOΣ
·Nk

)
⊗ (%ν−1 · χ2(a2)).

Therefore by combining (154) and (155) we obtain(
χN k − [$v] · (χN k)

)
(a) = −ε(a∞)k ·

(
N(rν−1a2)−k1X ·Nk

)
⊗ (%ν−1 · χ2(a2))

where X = (rν−1a2 \ rνa2) ∩ (1 + pmOΣ). Now (153) follows from

1Xa,V,S0
·
(
χN k − [$v](χN k)

)
(a) = ±

(
N(rν−1a2)−k1Xa,V,S0

∩X ·Nk
)
⊗ (%ν−1χ2(a2)) = 0

where we have used Xa,V,S0 ∩ X ⊆ rνa2 ∩ (rν−1a2 \ rνa2) = ∅. �

Now the key observation is that if S1 ⊆ S is a subset such that (150) holds for every v ∈ S1

then the pairing (141) extends canonically to a pairing Dlpol(1 +pmOΣ,Z[1/q])(ε)×Cc(S1,Z)→ R.
Namely, we define a pairing

(156) 〈 · , · 〉χ,k,S1,S : Dlpol(1 + pmOΣ,Z[1/q])(ε)× Cc(S1,Z) −→ R

by

〈µ, ϕ〉χ,k,S1,S := βS\S1
(µ,

∏
v∈S1

[$v] · (χN k),
∏
v∈S1

(1− [$v])ϕ)

for µ ∈ Dlpol(1 + pmOΣ,Z[1/q])(ε) and ϕ ∈ Cc(S1,Z). Note that it is well-defined by (148). The
pairing (156) has the following properties
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Lemma 6.7. Let S1 ⊆ S be a subset such that (150) holds for every v ∈ S1.

(a) If S2 ⊆ S1 then we have

(157) 〈µ, ϕ〉χ,k,S1,S = 〈µ, ϕ〉χ,k,S2,S

for every µ ∈ Dlpol(1 + pmOΣ,Z[1/q])(ε) and ϕ ∈ Cc(S2,Z).

(b) The pairing (156) is Γ-equivariant, i.e. we have

〈γµ, γϕ〉χ,k,S1,S = χ(γ) · 〈ϕ, µ〉χ,k,S1,S

for every γ ∈ Γ, µ ∈ Dlpol(1 + pmOΣ,Z[1/q])(ε) and ϕ ∈ Cc(S1,Z).

(c) Let {av}v∈S∞ be a collection of ideals of R such that condition (ii) of Thm 6.1 holds. Then the
image of the pairing (156) is contained in

∏
v∈S∞ av.

Note that (a) for S2 = ∅ implies in particular that the pairing (156) extends (141), i.e. we have

〈µ, ϕ〉χ,k,S1,S = 〈µ, ϕ〉χ,k,S
for every µ ∈ Dlpol(1 + pmOΣ,Z[1/q])(ε) and ϕ ∈ Cc((AΣ)∗/UΣ,Z).

Proof. For (a) it suffices to consider the case S1 = S2∪{w}, w 6∈ S2. Note that if S2 = ∅, S1 = {w}
then this is just the statement of Lemma 6.6 above. The proof there can be easily adapted to the
more general case so we only sketch the argument. Put S3 = S \ S1, S4 = S \ S2 = S3 ∪ {w},
Ψ :=

∏
v∈S2

[$v] · (χN k) and ϕ′ :=
∏
v∈S2

(1− [$v])ϕ. Similar to (151), Remark 5.4 (b) yields

〈Ψ, ϕ′〉S4 = 〈[$w]Ψ, (1− [$w])ϕ′〉S3 + 〈(1− [$w])Ψ, ϕ′〉S3

and (157) follows once we have established that 〈(1 − [$w])Ψ, ϕ′〉S3 = 0. This can be seen by an
almost identical argument as (152).

The second assertion follows again from (140) and (130) and the third can be proved by the
same arguments as Lemma 6.2. Note that one only has to verify that (146) holds if we replace the
function χN k with

∏
v∈S1

[$v] · (χN k). �

Now assume that {av}v∈S∪S∞ is a collection of ideals of R such that conditions (i) and (ii) of
Thm. 6.1 are satisfied. Recall that the second condition is equivalent to require that we have
χv(x) ≡ |x|−kv mod av for every x ∈ Ov, x 6= 0 and v ∈ S. For v ∈ S we put R(v) := R/av and let
χ(v) : (AΣ)∗/U → R(v)∗ be the reduction of χ modulo av. More generally, for a non-empty subset

S1 ⊆ S we put R(S1) := R/aS1 where aS1 =
∑

v∈S1
av and let χ(S1) := pr ◦χ : (AΣ)∗/U χ−→ R∗

pr−→
R(S1)∗ be the reduction of χ modulo aS1 . For S1 = ∅ we put R(∅) = R and χ(∅) = χ.

We consider the bounded complex

(158) R• : 0 −−−−→ R0
∂0−−−−→ R−1

∂−1−−−−→ . . . −−−−→ R1−r
∂1−r−−−−→ R−r −−−−→ 0

defined by

R−i =
⊕

S1 ⊆ S
#S1 = i

R(S1)

for i ∈ {0, 1, . . . , r} and Ri = 0 if i 6∈ {−r, . . . ,−1, 0}. The boundary map ∂−i : R−i → R−i−1

for i ∈ {0, 1, . . . , r − 1} is defined as follows. Let S2 and S1 are subsets of S of cardinality i
and i + 1 respectively. The (S2, S1)-component of ∂−i is = 0 if S2 6⊂ S1. It is (−1)ν · pr, where
pr : R(S2) → R(S1) is the natural projection, if S2 ⊆ S1 and S1 = {vj0 , . . . , vji}, S2 = S1 \ {vjν}
with 1 ≤ j0 < . . . < ji ≤ r. Alternatively, the complex (158) may be defined as follows. For v ∈ S
let Rv• be the complex [R

pr−→ R/av] concentrated in degree 0 and −1. Then we have

R• = Rv1
• ⊗R . . .⊗R Rv1

• .
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We can extend the pairing (141) to a pairing Dlpol(1 + pmOΣ,Z[1/q])× C• → R•, i.e. to a chain
map

(159) Ξ• : Dlpol(1 + pmOΣ,Z[1/q])(ε)⊗ C• −→ R•
by defining Ξ−i for i ∈ {0, 1, . . . , r} as the direct sum (the sum over all S1 ⊆ S with #S1 = i) of
the maps

Dlpol(1 + pmOΣ,Z[1/q])(ε)⊗ Cc(S1,Z) −→ R(S1), µ⊗ ϕ 7→ 〈µ, ϕ〉χ(S1),k,S1,S

In fact by Lemma 6.7 (c) we see that the image of (159) is contained in R• ⊗R (
∏
v∈S∞ av). That

(159) is indeed a chain map follows from Lemma 6.7 (a). If we take into account the Γ-actions then
Lemma 6.7 (b) implies that

Ξ• : Dlpol(1 + pmOΣ,Z[1/q])(ε)⊗ C• → R• ⊗R

( ∏
v∈S∞

av

)
(χ)

is a chain map of Γ-modules. It therefore induces cap-product pairings

∩χ,k,S : H i(Γ,Dlpol(1 + pmOΣ,Z[1/q])(ε))×Hj(Γ, C•) −→ Hj−i(Γ,R• ⊗R

( ∏
v∈S∞

av

)
(χ))

for i, j ∈ Z.
Now we make specific choices for R, χ and the ideals av, v ∈ S ∪ S∞ namely we choose them to

be “universal”. Firstly, choose an ideal m ⊆ OF whose set of prime factors is contained in S and
let χ be the universal homomorphism from (AΣ)∗/UΣ

m into the group of units of a Z[1/q]-algebra.
More precisely, we consider the Z[1/q]-group algebra R = Runiv := Z[1/q][(AΣ)∗/UΣ

m ] and let χ be
the obvious homomorphism

χ = χuniv : (AΣ)∗/UΣ
m −→ R∗, xUΣ

m 7→ [xUΣ
m ].

For v ∈ S ∪ S∞ we choose for av to be the smallest ideal of R such that condition (i) resp. (ii) of
Thm. 6.1 holds. Specifically, if mv denotes the exponent of v ∈ S occurring the prime decomposition
of the ideal m then we set

ãv :=

{
ker(Z[1/q][F ∗v /U

(mv)
v ]

pr−→ Z[1/q][F ∗v /Uv]/([$v]−N(v)k)) if v ∈ S,

ker(Z[1/q][F ∗v /Uv]
pr−→ Z[1/q][F ∗v /Uv]/

(
[(−1)Uv] + (−1)k+1[Uv]

)
) if v ∈ S∞

and put
av = auniv

v := ãv ⊗ Z[1/q][(AΣ,v)∗/UΣ,v
m ].

Note that av is indeed contained in R since Z[1/q][(AΣ,v)∗/UΣ,v
m ] is a free Z[1/q]-algebra. With

these choices for R and av we obtain

Lemma 6.8. For every i ∈ Z we have

(a) Hi

(
R• ⊗R

(∏
v∈S∞ av

))
=

{ ∏
v∈S∪S∞ av if i = 0,

0 otherwise.

(b) Hi(Γ,R• ⊗R
(∏

v∈S∞ av
)
) = Hi(Γ, (

∏
v∈S∪S∞ av)(χ)).

Proof. (a) For v ∈ S∞ the quotient (Z[1/q][F ∗v /Uv])/ãv is isomorphic to

Z[1/q][F ∗v /Uv]/
(

[(−1)Uv] + (−1)k+1[Uv]
)
∼= Z[1/q],

hence it is in particular a flat Z[1/q]-algebra. It follows that we have∏
v∈S∞

av = Z[1/q][(AΣ,∞)∗/UΣ,∞
m ]⊗Z[1/q]

⊗
v∈S∞

ãv
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For v ∈ S we put Rv := Z[1/q][F ∗v /U
(mv)
v ], Rv := Z[1/q][F ∗v /Uv]/([$vUv]−N(v)k) and let πv : Rv →

Rv be the canonical projection so that ãv is its kernel. If we denote by R̃v• the complex [Rv
πv−→ Rv]

concentrated in degree 0 and −1 and put MS := Z[1/q][(AS,Σf )∗/USf ] ⊗Z[1/q] (
⊗

v∈S∞ ãv) then we

have

R• ⊗R

( ∏
v∈S∞

av

)
= Rv1

• ⊗Z[1/q] . . .⊗Z[1/q] Rv1
• ⊗Z[1/q] M

S .

Note that Rv, Rv and MS are flat as Z[1/q]-modules. Indeed, Rv and RS are free as Z[1/q]-modules
and we have Rv ∼= Z[1/q][T±1]/(T − 1) ∼= Z[1/q] if k = 0 and Rv ∼= Z[1/q][T±1]/(T − N(v)k) ∼=
Z[1/q, 1/N(v)] if k > 0. It follows

Hi

(
R• ⊗R

( ∏
v∈S∞

av

))
=

{
ãv1 ⊗Z[1/q] . . .⊗Z[1/q] ãvr ⊗Z[1/q] M

S if i = 0,
0 otherwise.

=

{ ∏
v∈S∪S∞ av if i = 0,

0 otherwise.

(b) follows immediately from (a) using the homological spectral sequences ([23], 5.7.8). �

Proof of Theorem 6.1. We first prove the assertion for R = Runiv, χ = χuniv, {av}v∈S∪S∞ =

{auniv
v }v∈S∪S∞ and π = πuniv : Runiv → R

univ
= Runiv/

∏
v∈S∪S∞ auniv

v . Consider the commutative
diagram

Hn−1(Γ, C•)
(149)−−−−→ Hn−1(Γ, Cc((AΣ)∗/UΣ,Z))yξ 7→Eis∩χ,k,Sξ

yζ 7→Eis∩χ,k,Sζ

H0(Γ,R• ⊗R
(∏

v∈S∞ av
)

(χ)) −−−−→ H0(Γ, R(χ))
π∗−−−−→ H0(Γ, R(χ))

The first lower horizontal map is induced by the composite of the forgetful map

R• ⊗R

( ∏
v∈S∞

av

)
−→ R0 ⊗R

( ∏
v∈S∞

av

)
=
∏
v∈S∞

av

with the inclusion
∏
v∈S∞ av ↪→ R. Therefore by Lemma 6.8 (b) the lower sequence of the diagram

can be identified with the exact sequence

H0(Γ, (
∏
v∈S∪S∞ av)(χ))

ι∗−−−−→ H0(Γ, R(χ))
π∗−−−−→ H0(Γ, R(χ))

where ι :
∏
v∈S∪S∞ av ↪→ R is the inclusion. Using Remark 6.5 we obtain

π∗ (Eis∩χ,k,S ϑ) = π∗ ◦ ι∗
(
Eis∩χ,k,S ϑS

)
= (π ◦ ι)∗

(
Eis∩χ,k,S ϑS

)
= 0.

Now we consider the case of an arbitrary ring R, character χ : (AΣ)∗/U → R∗ and collection of
ideals {av}v∈S∪S∞ of R satisfying the conditions (i) and (ii). We choose an ideal m ⊆ OF whose
set of prime factors is contained in S and such that UΣ

m ⊆ U . Then χ induces a Z[1/q]-algebra
homomorphism X : Runiv → R such that χ = X ◦ χuniv and X(auniv

v ) ⊆ av for all v ∈ S ∪ S∞.

Therefore X induces a homomorphism X : R
univ → R and standard properties of the cap-product

imply

π∗ (Eis∩χ,k,S ϑ) = X∗
(
πuniv
∗

(
Eis∩χuniv,k,S ϑ

))
= 0.

�
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Now we turn to the proof of Thm. 1.1. Therefore in the following K/F denotes a finite abelian
extension with Galois group G and S a finite set of nonarchimedean places of F that contains all
places that are ramified in K/F . We fix a place p ∈ S and an additional nonarchimedean place q
of F not contained in S.

Proposition 6.9. For every k ∈ Z≥0 we have

(160) ΘS,q(K/F,−k) ∈

 ∏
v∈S∪S∞,v 6=p

I(k)
v

⊗ Z[1/q].

Here q denotes again the residue characteristic of q.

Proof. We apply Thm. 6.1 to the ring R = Z[1/q][G], the character χ = inv ◦ rec : (Ap,q)∗/U −→
Z[1/q][G] (where U is a sufficiently small open subgroup of Up,q that contains US,q) and the collection

of ideals av ⊗ Z[1/q] := I(k)
v ⊗ Z[1/q] for v ∈ S \ {p}. Thus by (142) and Cor. 5.8 we have 18

π∗

(
(−1)n N(q)−k [σq] ·ΘS,q(−k)

)
= π∗

(
Eis∩χ,k,S\{p} ϑ

)
= 0 in H0(Γ, R(χ))

where π : Z[1/q][G]→ R :=
(
Z[G]/

∏
v∈S∪S∞,v 6=p I

(k)
v

)
⊗Z[1/q] is the projection. Note that because

χ is trivial on Γ, we have π∗ = π : R = H0(Γ, R(χ))→ H0(Γ, R(χ)) = R, hence

(−1)n N(q)−k [σq] ·ΘS,q(−k) ∈ ker(π) =
∏

v∈S∪S∞,v 6=p

I(k)
v ⊗ Z[1/q].

Since N(q) and [σq] are units in Z[1/q][G] we conclude ΘS,q(K/F,−k) ∈
∏
v∈S∪S∞,v 6=p I

(k)
v . �

For s ∈ C put δT (s) :=
∏

q∈T (1−N(q)1−s[σ−1
q ]) ∈ C[G] so that ΘS,T (K/F, s) = δT (s)ΘS(K/F, s).

The following Lemma generalizes Lemmas 62 and 63 in [10].19

Lemma 6.10. For k ∈ Z≥0 we have

(a) δT (−k) ∈ AnnZ[G]

(⊕
v∈TK H

0(k(v), (Q/Z)′(k + 1))
)

.

(b) Let m := #(H0(K,Q/Z(k + 1))), let X ⊆ SpecOF [1/m] be a nonempty open subset disjoint
from S and let J (X) ⊆ Z[G] be the ideal generated by the set {1−N(q)k+1[σ−1

q ] | q ∈ X}. Then,

AnnZ[G](H
0(K,Q/Z(k + 1))) = J (X).

Proof. (a) Let q ∈ T and let v be a place of K above q. Since the Frobenius σq acts by multiplication
with N(q)k+1 on H0(k(v), (Q/Z)′(k+ 1)) we have (1−N(q)1+k[σ−1

q ]) ·H0(k(v), (Q/Z)′(k+ 1)) = 0.

Because δT (−k) is a multiple of 1−N(q)1+k[σ−1
q ] we conclude that

δT (−k) ·

⊕
v∈TK

H0(k(v), (Q/Z)′(k + 1))

 = 0.

(b) The action of G on H0(K,Q/Z(k+ 1)) is given by a character ψ : G→ (Z/mZ)∗. By replacing
K with the fixed field of ker(ψ) if necessary we may assume that ψ : G → (Z/mZ)∗ is injective.
The character ψ induces a ring homomorphism Ψ : Z[G]→ Z/mZ. If q ∈ X then ψ(σq) = N(q)k+1

(mod m) hence 1−N(q)k+1[σ−1
q ] ∈ ker(Ψ). In particular we have

(161) N(q)k+1 ≡ 1 mod m ⇐⇒ ψ(σq) = 1 ⇐⇒ σq = 1.

18Note that we have changed the notation; what is called S and S′ in loc. cit. is called S \ {p} and S here.
19In [10] only the case k = 0 is considered.
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Note that the ring homomorphism Z→ Z[G]/J (X) is surjective with non-trivial kernel. Indeed, for
any σ ∈ G there exists q ∈ X with σq = σ, so we have [σ]−N(q)k+1 = [σq](1−N(q)k+1[σ−1

q ]) ∈ J(X).
Let m′ ∈ Z≥1 with m′Z = Z ∩ J (X). We will show m′ = m which implies

AnnZ[G](H
0(K,Q/Z(k + 1))) = ker(Ψ) = J (X).

Firstly, since m′ ∈ J (X) ⊆ ker(Ψ) we have m | m′. Note that for q ∈ X we have

(162) N(q)k+1 ≡ 1 mod m =⇒ N(q)k+1 ≡ 1 mod m′.

Indeed, if 1−N(q)k+1 ∈ mZ then σq = 1 by (161) and therefore 1−N(q)k+1 = (1−N(q)k+1[σ−1
q ]) ∈

J(X) ∩ Z = m′Z. To prove m = m′ we consider the action of GF on the group µm′(Q)⊗
k+1

. It
is given by a character ψ′ : GF → (Z/m′Z)∗. We denote by K ′ the fixed field of ker(ψ′), by G′

the Galois group of K ′/F and by Ψ′ : Z[G′]→ Z/m′Z the ring homomorphism induced by ψ′. As
before the ideal J(X)′ ⊆ Z[G′] generated by the set {1 − N(q)k+1[(σ′q)

−1] | q ∈ X} is contained
in ker(Ψ′) (here σ′q denotes the Frobenius at q in G′). Now by (161) and (162) a prime q ∈ X
that splits completely in K/F splits completely in K ′/F as well. Since K ⊆ K ′ this implies by
Čebotarev’s density theorem that K = K ′, hence m′ = m. �

Proof of Thm. 1.1. It suffices to show

(163) J := AnnZ[G](H
0(K,Q/Z(k + 1))) ⊆ I := {x ∈ Z[G] | x ·ΘS(K/F,−k) ∈

∏
v∈S∪S∞,v 6=p

I(k)
v }.

Indeed, the injectivity of (4) together with Lemma 6.10 (a) implies that δT (−k) ∈ J . Hence (163)
yields

ΘS,T (K/F,−k) = δT (−k) ·ΘS(K/F,−k) ∈
∏

v∈S∪S∞,v 6=p

I(k)
v .

To prove (163) note that by (160), for every q ∈ X there exists nq ∈ Z≥0 with

(164) N(q)nq(1−N(q)k+1[σ−1
q ]) ∈ I.

By Lemma 6.10 (b) for any nonempty open subset X ⊆ SpecOF [1/m] disjoint from S we have
J (X) = J . In fact since Z[G] is noetherian the Lemma implies that we can choose two disjoint finite
sets X1, X2 ⊆ SpecOF [1/m] \ S such that J (X1) = J = J (X2) and so that M1 :=

∏
q∈X1

N(q)nq

and M2 :=
∏

q∈X2
N(q)nq are coprime. Now (164) implies Mi · J = Mi · J (Xi) ⊆ I for i = 1, 2

hence J = gcd(M1,M2) · J ⊆ I. �

Appendix

Topologies and Sheaves. Let X be a set. We consider a collection Open(X) of subsets of X with
the property that ∅, X ∈ Open(X) and that for any pair U, V ∈ Open(X) we have U ∩ V,U ∪ V ∈
Open(X). The pair (X,Open(X)) will be called a pre-site. Elements of Open(X) will be called
open subsets of X. For an arbitrary subset X ′ ⊆ X we let Open(X ′) be the set of subsets of X ′ of
the form U ∩X ′ with U ⊆ X open. Clearly (X ′,Open(X ′)) is again a pre-site. Let (X,Open(X))
and (Y,Open(Y )) be pre-sites. A pre-continuous morphism f : (X,Open(X)) → (Y,Open(Y )) is
map f : X → Y such we have f−1(V ) ∈ Open(X) for every V ∈ Open(Y ).

Let R be a ring. A contravariant functor F : Open(X) → ModR with F(∅) = 0 will be called
an R-presheaf on (X,Open(X)). Here we view Open(X) as a category; its set of objects are the
open subsets of X and the only morphisms are inclusion maps. A morphism of R-presheaves
is a morphism of functors. As usual if V ⊆ U are open subsets of X then the image of the
inclusion V ↪→ U under F will be denoted by F(U) → F(V ), s 7→ s|V . The category of R-
presheaves on (X,Open(X)) will be denoted by PSh(X,Open(X);R) (or by PSh(X,R) for short,
if it is clear which collection of subsets Open(X) of X we consider). It is an abelian category with
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enough injectives. If (Y,Open(Y )) is another pre-site and if f : X → Y is pre-continuous then for
F ∈ PSh(X,R) we define f∗(F) ∈ PSh(Y,R) as usual by f∗(F)(V ) := F(f−1(V )) for every open
V ⊆ Y .

We collect certain facts and notions from ([12], Ch. C 2, §1), ([14], §§16-18) and ([22], 7.47)
adapted to the specific framework that is relevant to us. Firstly, we recall the notion of a coverage
and of a site (as defined in [12], Ch. C 2, Def. 2.1.1).

Definition A.1. (a) Let (X,Open(X)) be a pre-site. A coverage C on Open(X) is function as-
signing to each open subset U of X a collection C(U) of families {Ui}i∈I of elements in Open(U)
called (C-)coverings of U . It has the following property

(C) For open subsets U , V of X and a covering {Ui}i∈I of U , the family {Ui ∩ V }i∈I is a covering
of U ∩ V .

(b) The triple (X,Open(X),C) consisting of a pre-site (X,Open(X)) and a coverage C on Open(X)
will be called a site. 20

(c) A continuous morphism f : (X,Open(X),CX) → (Y,Open(Y ),CY ) between sites is a map
f : X → Y that is pre-continuous (i.e. we have f−1(V ) ∈ Open(X) for every open subset V ⊆ Y )
and is cover-preserving (i.e. for every V ∈ Open(Y ) and a covering V = {Vi}i∈I of V the collection
of pre-images f−1(V) := {f−1(Vi)}i∈I is a covering of f−1(V )).

Note that a topological space X defines in a canonical way a site in the above sense which –
by abuse of notation – will be denoted by X as well. Moreover a map between topological spaces
f : X → Y is continuous if and only if it is continuous as a morphism between sites.

Let X = (X,Open(X),C) be a site. An R-sheaf on X is an R-presheaf that satisfies the sheaf
property for C-coverings. More precisely we have

Definition A.2. An R-sheaf F on X = (X,Open(X),C) is an R-presheaf on (X,Open(X)) such
that for every open subset U ⊆ X and every C-covering {Ui}i∈I of U the sequence of R-modules

0 −−−−→ F(U)
s 7→(s|Ui )i∈I−−−−−−−→

∏
i∈I F(Ui)

(si)i∈I 7→(si|Ui∩Uj−sj |Ui∩Uj )(i,j)∈I2−−−−−−−−−−−−−−−−−−−−−−−→
∏

(i,j)∈I2 F(Ui ∩ Uj)
is exact.

A homomorphism of R-sheaves on X is a morphism of presheaves. The category of R-sheaves
on X will be denoted by Sh(X,R) = Sh(X,Open(X),C;R).

Proposition A.3. (a) Let X be a site. The category Sh(X,R) is R-linear, abelian and has enough
injectives. Moreover it satisfies the axiom (AB5).

(b) Let f : X → Y be a continuous morphism between sites. The functor

(166) f∗ : Sh(X,R) −→ Sh(Y,R), F 7→ f∗(F)

is well-defined and admits an exact right adjoint

(167) f∗ : Sh(Y,R) −→ Sh(X,R), G 7→ f∗(G).

For the proof we need some preparation. Let U ⊆ X be open. Recall that a subset S of Open(U)
is called a sieve over U if for every pair of open subsets U , V of X with U ∈ S and V ⊆ U we have
V ∈ S. A coverage C on Open(X) is called sifted if every covering is a sieve. Given an arbitrary
coverage C on Open(X) there is an associated sifted coverage C which defines the same category of
R-sheaves. We recall its definition. Given an open subset U ⊆ X and a collection U = {Ui}i∈I of
open subsets of U the set of open subsets of U

S(U) := {V ∈ Open(X) | ∃i ∈ I, V ⊆ Ui}
20Note that a site as defined above is usually not a site in the sense ([14], 17.2.1) and ([22], Tag 00VH).
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is a sieve. It is called the sieve generated by U . If C be a coverage on Open(X) then C is the
coverage defined by C(U) := {S(U) | U ∈ C(U)} for every open U ⊆ X. By ([12], Ch. C 2, Lemma
2.1.3) we have Sh(X,Open(X),C;R) = Sh(X,Open(X),C;R). We recall

Definition A.4. (a) A sifted coverage C on Open(X) is called Grothendieck topology if the following
holds

(GT1) For every open U ⊆ X the maximal sieve over U (i.e. the sieve Open(U)) is a C-covering.

(GT2) If U is a C-covering of U and if S is another sieve over U such that SV := {W ∈ Open(V ) |
W ∈ S} is a C-covering of V for every V ∈ U then S is a C-covering of U .

A triple (X,Open(X),C) consisting of a pre-site (X,Open(X)) and a Grothendieck coverage C on
Open(X) will be called a Grothendieck site. 21

(b) Let X = (X,Open(X),CX) and Y = (Y,Open(Y ),CY ) be Grothendieck sites. A Grothendieck
continuous morphism f : X → Y is a map of the underlying sets that is pre-continuous and
so that for every open subset V ⊆ Y and CY -covering V of V the sieve S(f−1(V)) generated by
f−1(V) = {f−1(W ) |W ∈ V} is a CX-covering of f−1(V ).

By ([12], Ch. C 2, Prop. 2.1.9) given a coverage C on Open(X) there is a smallest Grothendieck

coverage C̃ on Open(X) containing C (i.e. we have C(U) ⊆ C̃(U) for every open U ⊆ X) and for

this coverage we have Sh(X,R) = Sh(X,Open(X),C;R) = Sh(X,Open(X), C̃;R). By ([14], 9.6.2
and 18.1.6) we conclude in particular that the category Sh(X,R) is abelian with enough injectives
(see [14], 9.6.2 and 18.1.6). This proves the first part of Prop. A.3. For (b) we need the following

Lemma A.5. Let f : (X,Open(X),CX) → (Y,Open(Y ),CY ) be a continuous morphism between
sites. Then f is a Grothendieck continuous morphism, when viewed as a morphism between the

Grothendieck sites (X,Open(X), C̃X)→ (Y,Open(Y ), C̃Y ).

Proof. We define a coverage D on Open(Y ) by letting D(V ) for V ∈ Open(Y ) consists of all sieves
S ′ over V such that the sieve S(f−1(S ′)) over f−1(V ) generated by f−1(S ′) = {f−1(W ) |W ∈ S ′}
is a C̃X -covering of f−1(V ). One easily verifies that D is a Grothendieck coverage that contains CY
hence also C̃Y . �

Proof of Prop. A.3 (b). By the Lemma and ([14], 17.5.1) we have f∗(F) ∈ Sh(Y,R) for F ∈
Sh(X,R). This proves that (166) is well-defined and that it admits a right adjoint (167). Since the
map f−1 : Open(Y ) → Open(X), V 7→ f−1(V ) – when viewed as a functor – is clearly left exact
(compare [14], Def. 3.3.1) the functor (167) is exact by ([14], 17.5.2 (iv)). �

Remark A.6. The key step in the proof that the category Sh(X,R) has enough injectives given
in [13] is to show that Sh(X,R) has a system of generators. In fact in ([14], 18.1.6) it is shown
that for every open subset U ⊆ X there exists a sheaf RU ∈ Sh(X,R) with the property

HomSh(X,R)(RU ,F) ∼= F(U)

for every F ∈ Sh(X,R), i.e. the sheaf RU represents the functor Sh(X,R) → ModR,F 7→ F(U).
The family of sheaves {RU}U∈Open(X) is then a system of generators of Sh(X,R).

Corollary A.7. The functor of global sections

(168) H0(X, · ) : Sh(X,R) −→ ModR, F 7→ H0(X,F) := F(X)

has an exact left adjoint
ModR −→ Sh(X,R), M 7→ MX .

We call MX the sheaf on X associated to the R-module M .

21Note that a Grothendieck site is a site in the sense of ([14], 17.2.1) as well as in the sense of ([22], Tag 00VH).
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Proof. The category of sites has a final object pt, the one-pointed topological space. Let f : X → pt
be the unique morphism. For pt we have Sh(pt, R) = ModR and f∗ corresponds to the functor
(168) under this identification. Therefore the assertion is special case of Prop. A.3 (b), namely the
case of he morphism f : X → pt. �

Recall that the sheaf cohomology groups H•(X,F) are defined as the right derived functors of
(168). More precisely for i ∈ Z≥0 the i-th right derived functor of (168) will be denoted by

H i(X, · ) : Sh(X,R) −→ ModR, F 7→ H i(X,F).

We note that if f : X → Y is a continuous morphism between sites then by Prop. A.3 (b) the
functor f∗ is left exact and preserves injectives. As in the case of usual topological spaces this
implies that there exists a Leray spectral sequence

(169) Ers2 = Hr(Y,Rsf∗F) =⇒ Er+s = Hr+s(X,F)

for every R-sheaf F on X.
G-equivariant sheaf. Let G be a group and let X = (X,Open(X),CX) be a site equipped with
a continuous G-action G ×X → X, (g, x) 7→ g · x. By that we mean that the underlying set X is
equipped with a G-action G×X → X, (g, x) 7→ g ·x and that g· : X → X,x 7→ g ·x is a continuous
morphism of sites for every g ∈ G.

Definition A.8. Let R be a ring and let X be a site equipped with a continuous G-action.

(a) A G-equivariant R-sheaf F on X is an R-sheaf together with a collection of isomorphisms
ρg,F : F → g∗F such that (g1)∗(ρg2,F ) ◦ ρg1,F = ρg2·g1,F for all g1, g2 ∈ G.

(b) A morphism of G-equivariant R-sheaves α : F → G is a morphism of sheaves that commutes –
in the obvious sense – with the isomorphisms ρg,F , ρg,G for every g ∈ G.

(c) The category of G-equivariant R-sheaves on X will be denoted by Sh(X,G,R).

The collection of isomorphisms in (a) will be called the G-action on F . Note that it induces a
G-action on the R-module of global sections H0(X,F) = F(X).

Proposition A.9. (a) The category Sh(X,G,R) is an R-linear abelian category which satisfies
axiom (AB5).

(b) The forgetful functor

(170) Sh(X,G,R) −→ Sh(X,R)

is exact and has an exact left adjoint. In particular it preserves injectives.

(c) The category Sh(X,G,R) has enough injectives.

(d) The functor of global sections H0(X, · ) : Sh(X,G,R)→ ModR[G] has an exact left adjoint.

Proof. (a) and the exactness of (170) follow easily from Prop. A.3 (a) and from the fact that the
kernel and cokernel of a morphism of G-equivariant R-sheaves α : F → G in the category Sh(X,R)
carry again a canonical G-action. The left adjoint

(171) IndG : Sh(X,R) −→ Sh(X,G,R)

of (170) can be defined as follows. For F ∈ Sh(X,R) the underlying sheaf of IndG(F) is given by

IndG(F) =
⊕
g∈G

g∗(F).

For g ∈ G we define the isomorphism

ρg : IndG(F) =
⊕
h∈G

h∗(F) −→ g∗(IndG(F)) =
⊕
h∈G

(gh)∗(F)
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by just permuting the individual summands h∗(F) of IndG(F) indexed by h ∈ G via left multipli-
cation with g−1, i.e. the summand h∗(F) is mapped identically to the summand g∗((g

−1h)∗(F)) of
g∗(IndG(F)). Clearly the functor (171) is exact.

(c) It suffices to see that Sh(X,G,R) admits generators. For an open subset U ⊆ X let RU
be the sheaf representing the functor Sh(X,R) → ModR,F 7→ F(U) (see Remark A.6). Then
IndGRU represents the functor Sh(X,G,R) → ModR,F 7→ F(U). This implies that the family
{IndGRU}U⊆X̂ open

is a system of generators of Sh(X,G,R).

(d) follows immediately from Cor. A.7 using the fact that a G-action on a R-module M induces
a G-action on the sheaf MX associated to M . �

Remark A.10. In section 3 we have considered equivariant sheaves twisted by a character χ : G→
R∗. To explain this notion let (F , (ρg,F )g∈G) be a G-equivariant R-sheaf. We define the twisted
G-equivariant R-sheaf F(χ) by F(χ) = F and ρg,F(χ) := χ(g) · ρg,F for g ∈ G.

We recall the definition of equivariant sheaf cohomology and the spectral sequence linking it to
ordinary sheaf cohomology. For F ∈ Sh(X,G,R) taking the G-invariant elements of H0(X,F)
define a left exact functor

(172) Sh(X,G,R) −→ ModR, F 7→ H0(X,F)G.

Its right derived functors will be denoted by

H i(X,G, · ) : Sh(X,G,R) −→ ModR, F 7→ H i(X,G,F).

The cohomology groups H•(X,G,F) are called the equivariant cohomology of X with coefficient
in the G-equivariant R-sheaf F .

Proposition A.11. For F ∈ Sh(X,G,R) there exists a spectral sequence

(173) Ers2 = ExtrR[G](R,H
s(X,F)) =⇒ Er+s = Hr+s(X,G,F).

Proof. The functor (172) factors as

(174) Sh(X,G,R)
F7→H0(X,F)−−−−−−−−→ ModR[G]

M 7→HomR[G](R,M)
−−−−−−−−−−−−→ ModR .

By Prop. A.9 (d) the first functor has an exact left adjoint, hence it preserves injectives. Therefore
there exists a Grothendieck spectral sequence corresponding to the decomposition (174) of the
functor (172). Finally by Prop. A.9 (b) for the E2-terms of said spectral sequence we have Ers2 =
ExtrR[G](R,H

s(X,F)). �

Let f : X → Y be a continuous morphism between sites. For F ∈ Sh(Y,R) passing in the
adjunction map F → f∗(f

∗(F)) to global sections yields a homomorphism

(175) H0(Y,F) −→ H0(X, f∗(F)).

As in ([11], Ch. II.5) the exactness of f∗ (see Prop. A.3 (b)) implies that (175) extends to a
morphism of δ-functors

(176) H i(Y,F) −→ H i(X, f∗(F)) i ≥ 0, F ∈ Sh(Y,R).

Similarly, if X and Y are equipped with a continuous G-action and if f is G-equivariant and if
F is a G-equivariant sheaf on Y then (175) is a homomorphism of R[G]-modules hence passing in
(175) to G-invariants leads to homomorphism H0(Y,G,F) → H0(X,G, f∗(F)) that extends to a
morphism of δ-functors

(177) H i(Y,G,F) −→ H i(X,G, f∗(F)) i ≥ 0, F ∈ Sh(Y,G,R).

as well.
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Some homological algebra. Let F : A → B and G : B → C be left exact additive functors
between abelian categories and assume that A and B have enough injectives. There exists obvious
morphisms

e
(1),i
A : RiG(F (A)) −→ Ri(G ◦ F )(A) ∀A ∈ A, i ≥ 0,(178)

e
(2),i
A : Ri(G ◦ F )(A) −→ G(RiF (A)) ∀A ∈ A, i ≥ 0.(179)

If there exists a Grothendieck spectral sequence associated to the composition of functors G ◦
F : A → C then (178) are just edge morphisms. Also the following Lemma would be a simple
consequence of said spectral sequence. However we will apply it in situations where the existence
of the Grothendieck spectral sequence is unclear.

Lemma A.12. Let n ∈ Z≥1 such that RiF (A) = 0 for all i = 1, . . . , n. Then the morphism (178)
is an epimorphism for i = 0, 1, . . . , n and

(180) e
(2),n+1
A : Rn+1(G ◦ F )(A) −→ G(Rn+1F (A))

is an isomorphism. In particular, if additionally we have F (A) = 0 then Ri(G ◦ F )(A) = 0 for all
i = 0, 1, . . . , n.

Proof. We prove the assertion by induction on n. So assume that n ≥ 1 and that the assertion
holds for n − 1. Let 0 −→ A −→ I −→ A′ −→ 0 be a short exact sequence in A with I being
injective. Then by assumption the sequence 0 −→ F (A) −→ F (I) −→ F (A′) −→ 0 is exact as well
and we have RiF (A′) ∼= Ri+1F (A) = 0 for i = 1, . . . , n − 1. The assertion regarding (178) follows
by a diagram chase in

. . . RiG(F (A)) −−−−→ RiG(F (I)) −−−−→ RiG(F (A′)) −−−−→ Ri+1G(F (A)) . . .ye(1),i
A

ye(1),i
I

ye(1),i

A′

ye(1),i+1
A

. . . Ri(G ◦ F )(A) −−−−→ Ri(G ◦ F )(I) −−−−→ Ri(G ◦ F )(A′) −−−−→ Ri+1(G ◦ F )(A) . . .

using the fact that Ri(G ◦ F )(I) = 0 for i ≥ 1 and that eiA′ is an epimorphism for i = 1, . . . , n− 1.
Moreover that (180) is an isomorphism follows from the commutativity of the diagram

Rn(G ◦ F )(A′)
∼=−−−−→ Rn+1(G ◦ F )(A)ye(2),n

A

ye(2),n+1
A

G(RnF (A′))
∼=−−−−→ G(Rn+1F (A)).

�
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