ADELIC EISENSTEIN CLASSES AND DIVISIBILITY PROPERTIES OF
STICKELBERGER ELEMENTS

ALEXANDROS GALANAKIS AND MICHAEL SPIESS

ABSTRACT. Nori’s Eisenstein cohomology classes and their integral refinements due to Beilinson,
Kings and Levin can be used to obtain simple proofs of the rationality and integrality properties of
special values of abelian L-functions of totally real fields. Here we introduce an adelic refinement
of these constructions. This will be used to establish new divisibility properties of Stickelberger
elements associated to abelian extensions of totally real fields.
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1. INTRODUCTION

In this paper we introduce an adelic refinement of the Eisenstein cohomology classes introduced
by Beilinson, Kings and Levin in [I] (which in turn are an integral refinement of the Eisenstein
classes introduced by Nori [16]). The classes of Beilinson, Kings and Levin are elements in the
cohomology of GL,,(Z) — or some of its subgroups — in degree n—1 with coefficients in the completed
group ring of the free-abelian group Z". Their construction is given in terms of GL,,(Z)-equivariant
sheaf cohomology on the n-dimension real torus R"/Z™ with coefficients in the so called logarithm
sheaf Zog, the locally constant sheaf associated to the completed group ring.

The adelic Eisenstein classes introduced in this paper are cohomology classes of the group GL,,(Q)
in degree n—1 with coefficients in a module Dy, which we call the module of locally polynomial
distributions on Q”H In principle our construction is modelled after that introduced in [1]. We
consider the GL, (Q)-equivariant sheaf cohomology of the adelic solenoid (A/Q)™. However one of
the difficulties in generalizing the approach of [I] to the adelic setting is that the usual topology
of the adeles and the adele class group is too fine to produce meaningful sheaf cohomology groups.
Instead we introduce a certain coarse Grothendieck topology — which we call lattice topology — and
develop a GL,(Q)-equivariant sheaf cohomology with respect to this topology. Another difficulty

Both authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
via the grant SFB-TRR 358/1 2023 — 491392403.

More precisely for technical reasons we have to work with a proper ”large” subgroup I' C GL, (Q) and distributions
on a certain I'-stable subset of Q"; for the purpose of keeping this introduction less technical we divert to section
for details.
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that we encountered is the fact that the logarithm sheaf does not seem to admit a natural adelic
counterpart. We work instead with the sheaf of locally polynomial distributions 2.

The interest in studying Eisenstein cohomology classes lies in their relation to special values of
L-functions. This was first exploited by Nori (and independently by Sczech in [19]) who reproved
the Theorem of Siegel and Klingen regarding the rationality of the values of partial zeta functions of
totally real fields at non-positive integers. Using their integral refinement of Nori’s classes Beilinson,
Kings and Levin were able to reprove the integrality results of Cassou-Nogues and Deligne-Ribet
for these special L—Valuesﬂ Our adelic variants of the Eisenstein classes allow us to refine these
results further by proving certain divisibility properties for Stickelberger elements at non-positive
integers. A first result in this direction had been obtained in joint work of the second author
with S. Dasgupta [7]. There a different and rather concrete construction of Eisenstein cohomology
classes — based on Shintani’s method to study special L-values — had been used. We feel that
the construction using equivariant sheaf cohomology introduced here is conceptually particularly
satisfying and that it adds a new tool to study properties of special L-values. The relation between
the Eisenstein classes introduced here and in [7] remains unclearﬂ

We now give the reader some idea about the topological (i.e. topos-theoretic) constructions on
which our definition of the adelic Eisenstein classes is based. For the purpose of keeping the technical
details to a minimum we consider here only a somewhat simplified situation and refer to sections
and [ for the general framework. We fix a totally real number field F' C C of degree n over Q
with ring of intergers Op. Let Z denote the set of all fractional ideals of F'. We attach to the ring
of finite adeles Ay, the ring of adeles A and the adele class group A/F of F' certain sitesﬂ denoted
by B, A and T. We refer to these as lattice topologies on Ay, A and A/F respectively. They are
much coarser than the usual topologies. For example an open subset U C B (i.e. an object of B)
is a subset U C Ay that is a-stable for some fractional ideal a € Z (i.e. we have a + U = U). Here
4 := a®Z is the closure of a in A ¢- A covering of an open subset U C B consists of a collection
of open subsets {U;}; of B so that U = |J, U; and so that there exists a € Z such that each U; is
a-stable. The lattice topologies A and T' are defined in a similar way.

The group I' := F* x F acts continuously on B and A whereas I' := F* acts continuously on
T. Moreover the site T" can be identified with the ”quotient” of A with respect to the natural
projection pr : A — A/F. Hence the pull-back pr* : Sh(T,T') — Sh(A,T") defines an equivalence
between the category of f—equivariant sheaves on A and the category of I'-equivariant sheaves on
T'. The basic properties of (equivariant) sheaf cohomology for sites of the type B, A and T will be
established in section [3

The construction of the I'-equivariant sheaf 2 on T is based on the notion of a locally polynomial
function which we now review. Let U C B be an open subset and put i :=UNF. Amap f: U — Z
is called a locally polynomial function if there exists a € Z such that U is a-stable and so that for a

Z-basis (w1, ...,w,) of a and for every x € U the map Z" — Z, (x1,...,xn) — f(x + D 1| zjw;) is
a polynomial function, i.e. there exists a polynomial P € Q[X71,...,X,,] with f(z + > | ziw;) =
P(z1,...,xy,) for every x1,...,z, € Z. The locally polynomial function f : i — Z is said to be

of bounded support if there exists a € Z such that U is a-stable and so that the support of f is
contained in finitely many a-orbits in &. We denote by Inti,o1 (U, Z) the ring of locally polynomial
functions on U of bounded support and put Dipe(U) := Hom(Inty,e (U, Z),Z). The assignment

2Similar results were obtained by Charollois and Dasgupta in [4] using an integral refinement of Sczech’s classes.

31t should be noted that both construction differ insofar that the two methods produce classes in different coho-
mology groups, i.e. in cohomology groups for different ”large” subgroups I' of GL,,(Q). It turns out that one obtains
also slightly different divisibility properties for Stickelberger elements; see Remark (b) below for details.

“We use here a definition of a site that is not the standard notion familiar to researchers in algebraic or arithmetic
geometry. For this reason we review in the appendix the necessary background material regarding sites and topoi
that we use throughout this paper.
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U — Dipoi(U) defines a f—equivariant sheaf on B, the sheaf of locally polynomial distributions on
B. By pulling it back to A via the morphism prg : A — B induced by the natural projection
A=Ay x Fy — Ay we obtain a f—equivariant sheaf Dipo1.4 = (prp)*(Dipol) on A. As alluded to
above the sheaf Dypo1 4 decends to a I'-equivariant sheaf 2 on T, i.e. we have pr*(Z) = Dipol,A-

In sectionwe investigate the (I'-equivariant) cohomology groups of T with coefficients in . One
of our key results (cf. Prop. is that the cohomology H*(T, Z) is concentrated in degree n and
that we have H™" (T, 2) = Z. We then proceed in defining the adelic Eisenstein classes following the
blueprint of Beilinson, Kings and Levin. We also establish a direct connection between our classes
and theirs (cf. Prop. [£.13). This will be used in section [§ to link the adelic Eisenstein classes to
special values of partial zeta functions and to Stickelberger elements.

We now describe our main applicationﬂ Namely, in section |§| we prove certain divisibility prop-
erties of Stickelberger elements. For that we fix a finite abelian extension K/F, K C C with Galois
group G. Let S be a finite set of nonarchimedean places of F that contains all places that are
ramified in K. Recall that the partial zeta function associate to an element o € G is given by

(1) (s(oys) = >, N@~

(a,8)=1,0q4=0
for Re(s) > 1 where oy is the image of the ideal a under the Artin map. It admits a meromorphic
continuation to the whole complex plane with a single simple pole at s = 1. We package the partial
zeta functions into a C[G]-valued function ©g(K/F,s) — the Stickelberger element — defined by

(2) Os(K/F,s) = Z(SUS
oeG
By the Theorem of Siegel and Klingen we have Og(K/F, —k) € Q[G] for k € Z>¢. It is well-known

that in order to obtain integrality results it is necessary to consider a variant of , namely the
T-smoothed Stickelberger element ©g (K /F,s) defined by

3) Osr(K/F,s) = [[(1=N(@)'~*[og NOs(K/F,s).

qeT

Here T is an additional set of nonarchimedean places of F' that is disjoint of S. Under certain mild
conditions on T" we have Og (K /F, —k) € Z|G] for k € ZZOH

To state our result we will introduce some ideals in the group ring Z[G]. For a place v of F' let
Gy C G be the decomposition group of v. If v is nonarchimedean then we denote by I, C G, the
inertia group at v and let o, € G, /I, be the Frobenius at v. If v is archimedean then o, denotes

the generator of G,. For k € Z>o and v € S U So we define ideals L(,k) C Z|G] by

() . | ker (Z[G] = Z|G/L]/([o;'] = N(v)")) if v oo,
h ’_{ ([oo] + (=1)**1) Z[G] if v | co.

Note that for k = 0 we have Z,") = ker(Z[G] — Z|G/G,)]) for every v € S U Sy
We also consider the following obvious map between Galois cohomology groups

(4) HY(K,Q/Z(k + 1)) — P H°(k(v), (Q/Z)'(k + 1))

veTK

where Tk denotes the set of places of K that lie above a place in T and where k(v) is the residue
field of v € Tx. The Galois module Q/Z(k + 1) appearing in the source of is the group

5Tt should also be possible to use our adelic Eisenstein classes to give formulas for Brumer-Stark units similar to
those obtained using Shintani cocycles (see [7], §6 or [6]); this question however will not be addressed in this paper.
6See the remark following Thm.
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Q/Z with the action of the absolute Galois group Gx = Gal(K/K) of K given by the (k+1)-
th power of the cyclotomic character Xcya : G — Aut(u(Q)) = Z* Similarly, for a place
v € Tk with residue characteristic p, the Galois modules (Q/Z)’(k + 1) appearing in the summand
HY(k(v),(Q/Z)'(k + 1)) of the target of is the group (Q/Z)" := {z € Q/Z | ged(ord(z),p) =
1} = @e;ﬁp Q¢/Zy where the action of the absolute Galois group Gk(v) = Gal(F,/k(v)) is again given
by the (k+1)-th power of the cyclotomic character Xcyel : Gr(wy) = Aut(u(Fp)) = Aut(ﬁ;) ~ (Z/)*
(with Z/ := [Lrsp Zo)-
Note that if £ = 0 then is the obvious map u(K) = @, cr, #(k(v)). Our main result is

Theorem 1.1. Let k € Z>g and let p € S be a fized place. Let T' be a finite set of nonarchimedean
places of F' disjoint from S such that the map is injective. Then we have

(5) osr(k/F-e ] .
vESUS o0, v#p

Hence under the assumption that is injective we have in particular O g7 (K/F, —k) € Z|G].

Remarks 1.2. (a) The map (4) is injective if 7" contains two primes of different residue character-
istics. It is also injective if £ = 0 and if T contains one prime of residue characteristic larger than
n+ 1.

(b) Theoremis already known in the case k = 0. It has first been proved in [7], except there it was
shown — under certain mild assumption on 7' - that ©g r(K/F,0) is contained in [ [, c o5, votu, 7
where vy is a fixed archimedean place of F. Hirose [10] later obtained the slightly stronger result
. In fact in his work the ”exceptional place” p can be any element of SUS,. It should be noted
that in both papers [7] and [10] the ”Shintani method” of constructing a degree (n—1) Eisenstein
cohomology class is used.

By work of Burns [2] it is known that (for k = 0) can also be deduced from a special case of
the equivariant Tamagawa number conjecture. The latter has been established recently in [5] if K
is a CM field.

(c) For k > 0 the only previously known result towards is the assertion that © g7 (K/F,—k) is

contained in the product of the ideals Lgk) taken over all archimedean places v of F' except one (see
[7], Thm. 5.9 (b)).

We now explain the strategy of the proof of Theorem Our method is of course related to
that developed in [7]. We use however a somewhat different homological algebra machine that is
partly inspired by ideas of Hirose [10]. Firstly, as in [7] we represent the Stickelberger element at
s = —k as a cap product of some adelic Eisenstein class [Eis with a homology class that is naturally
associated to the global reciprocity map for the extension K/F. The key novelty in our approach
is that we enrich this homology class ”locally” at each place in S\ {p}. This new class does not
lie in a homology group anymore but in a certain hyperhomology group that can be capped with
Eis as well. The resulting element then lies in a degree-0 hyperhomolgy group that maps naturally
into the product of the ideals L(,k) thus implying the divisibility result (firstly though only when
T = {q} and up denominators that are powers of the residue characteristic of g; by varying q
and using an argument involving Cebotarev’s density theorem we are then able to get rid of the
denominators).

"For any field E we denote by u(E) the roots of unity of E.
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Notation. Throughout this paper we use the following notation. For sets X and Y we let
Maps(X,Y) be the set of maps X — Y. For a partially ordered set Z = (Z, <) we denote by
Z°PP the same set but with the reversed partial ordering. The torsion subgroup of an abelian group
A will be denoted by Aiq.

By Top we denote the category of Hausdorff spaces with continuous maps as morphisms. If
X,Y € Top then we let C(X,Y) C Maps(X,Y) denote the subset of continuous maps X — Y.
Note that if Y is discrete then C'(X,Y’) consists of locally constant maps X — Y. If Y = Ris a
ring (equipped with the discrete topology) then we let C.(X, R) denote the subset of C(X, R) of
locally constant maps with compact support.

Unless stated otherwise all rings are commutative with 1 # 0. For a ring R we denote by Modg
the category of left R-modules. If A is an R-algebra and N an R-module then we put Ny = N®QpgA.
If M, is a bounded complex of R-modules then we denote by 7, (M,) its n-th homology module.
Also if M, and N, are bounded complexes of R-modules then we denote by M, ® g No the associated
double complex and also — by abuse of notation — its total complex. If G is a group and y : G — R*
a character (i.e. a homomorphism) then we denote by R(x) the R[G]-module R with G-action given
by x. More generally if M is an R[G]-module then M (x) denotes the R[G]-module M ®pr R(X).

For a ring R we denote by Aff(R) the group R* x R, i.e. Aff(R) is the subgroup of GLa(R) of

matrices of the form with ¢ € R* and b € R. More generally for an R-module M we denote

a b
0 1
by Aff (M) the group GL(M) x M. We often identify an element ¢ = (a, m) € Aff (M) with the
map ¢ : M — M it induces, i.e. the map M — M,z — a(zx) + m.

Let V be a finite-dimensional Q-vector space. By a lattice L in V we mean a finitely generated
subgroup of V' that generates V' as a vector space, i.e. we have rank(L) = dim(V’). The set of
lattices in V' will be denoted by Lat(V). More generally if F' is an algebraic number field with
ring of integers Op and if V' is a finite-dimensional F-vector space then we denote by Latop, (V)
the set of all lattice L in V that are also Op-submodules of V. In particular Latp, (F') is the set
of fractional ideals of F'. We say that V is oriented if Vg is equipped with an orientation. In this
case a basis (v1,...,v,) of V is called positively oriented if it belongs to the orientation.

Places of F' will be denoted by v, w or also by p, q etc. if they are finite. In the latter case we
denote the corresponding prime ideal of Of by p, q etc. as well. The norm of a fractional ideal a of
F will be denoted by N(a). By Er = O} we denote the group of global units of F'. More generally
for a finite set S of nonarchimedean places of F' we let Es = Efr g be the group of S-units of F'.
For a prime number p we denote by S, the set of primes of F' that lie above p and by S the set
of archimedean places of F. For a place v of F' we denote by F, the completion of F' at v. Also
we let | - |, be the associated normalized multiplicative valuation on F,. If v is nonarchimedean
then O, denotes the valuation ring of F,, U, = O} its group of units and ord, the corresponding
the normalized (additive) valuation on F, (so ord,(w,) =1 if w, € O, is a local uniformizer at v).
Moreover if v = p is finite then given a non-negative integer m > 0 we let Up(m) be the m-th higher
unit group, i.e. Up(m) ={zeU,|z=1 mod p™O,}.

In sections [ and [6] we assume that F is totally real field of degree n over Q. Recall that if
v € S corresponds to the embedding £ : F' — R then |z|, = |{(x)| and if v = q is finite then
|z|q = N(q)~ (@) For v € So we put U, = Ry = {x € R | 2 > 0}. We denote by A = Ap
(resp. Ay = Ap f) the ring of adeles of F' (the ring of finite adeles). For a set .S of places of F' we
let A% (resp. AJSC ) denote the ring of S-adeles (resp. finite S-adeles). We also define U® = [Togs Uvs
U}g = vaswm U, and Ug = [],cq Uy. If S contains all archimedean places then the factor group
(A%)*/U* is canonically isomorphic to the group Z° of fractional Op-ideals that are coprime to S.
We sometimes view F as a subring of A° via the diagonal embedding. If S consists of finitely many
nonarchimeden places then we let Og := F N[, .g O, be the associated semilocal subring of F.
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If ¥ is a set of places of Q then Sy, denotes the set of places of ' which lie above a place of X.
We often write Ag y;, ASE ete. for Agsyss, ASYSE ete. We also write USP, Usp, US> P> ete. for
USr}, Us,(p}s USUSes 795> ete. and use a similar notation for adeles. For example A% = AJ‘?
denotes the ring S U Sy-adeles of F. If S = () then we drop it from the notation (e.g. AP denotes
the set of Sp-adeles of F' for a prime p). For p € {2,3,5,...,00} we put F, = F®Q, = Hvesp F,.
We shall denote by Iy, B, = Er, Es  etc. the elements of F, Er, Eg etc. that are positive with
resp. to every embedding F' — R.

For an ideal m C Op, m # (0) we let F'™ be the ray class field of F in the narrow sense associated
with m. If U, denotes the open subgroup Uy, = proo Up(m’“) X HU|OO U, of A* with m, being the
exponent of p occurring in m, then the Galois group Gal(F™/F) is isomorphic to A*/F*U,, via the
reciprocity map. Or in terms of ray class groups we have Gal(F™/F) = Z™/P™. Here I™ := Z5n
and Sy, is the set of nonarchimedan places of F' that divide m and P™ is the subgroup of Z™
consisting of principal fractional ideals (x) with z € F} and = € Up(m”) for all p € S. We also
denote by Ey, (resp. Ey +) the subgroup of Ep consisting of units € € Er (resp. € € Ef ) that are
= 1 modulo m. Thus we have Ey = F* N Up.

2. LOCALLY POLYNOMIAL FUNCTIONS AND DISTRIBUTIONS

Polynomial functions and polynomial distributions on lattices. In the following by a lattice
we mean a free-abelian group L of finite rank. For a subring R of Q we recall the notion of an
R-valued polynomial function on L (see e.g. [3], Ch. XI).

Definition 2.1. Let L be a lattice of rankn. A map f: L — R is called an (R-valued) polynomial
function if for some (hence any) choice of a Z-Basis Ai,...,\n, of L there exists a polynomial
P(Xy,...,X,) € QXy,...,X,] such that

flmid +...+ 2 \,) = P(x1,...,20) V(z1,...,2,) € Z".
By Int(L, R) we denote the ring of all R-valued polynomial functions f : L — R.

In particular if L = Z™ then a polynomial P(Xy,...,X,) € Q[Xi,...,X,] — viewed as a map
Z" 3 (z1,...,2n) = P(x1,...,2,) — lies in Int(Z", R) if and only if it has values in R. For m € Zx¢

m—1 .
we put (fl) = W € Q[X]. More generally for a multi-index m = (mi,...,my) € (Z>)"
we set
X = (X
6 ] = ! X1,..., Xql
(©) ) i[[l(m)e@[ b X

Any polynomial P € Q[X7,...,X,] can be uniquely written as

P(Xy,...Xy) = > na(m)<i>

me(Zxo) 7

where the coefficients a(m) lie in Q and vanish for almost all m € (Z>()". The polynomial P lies
in Int(Z", R) if and only if all its coefficients a(m) lie in R, i.e. the polynomial functions (6] form
an R-basis of Int(Z", R) for any subring R C Q (cf. [18] [I7]).
For an arbitrary ring R we define
Int(L, R) := Int(L,Z) ® R.
As explained above if R C Q then this definition agrees with the previous one. We can attach to
an element f =>"" | fi ® a; € Int(L,R) amap L — R given by L > A\ — > 7, fi(A)a;. Therefore
elements of Int(L, R) will be called R-valued polynomial functions on L and we use the symbolic

notation f : L. — R. In practice we consider only the case where R is torsionfree so that the passage
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from an element of Int(L, R) to the map L — R does not ”loose information” (i.e. the obvious map
Int(L, R) — Maps(L, R) is injective if Ry, = 0).

If o : L’ — L is an affine map between lattices (i.e. L' — L, X\ — ¢(\) —(0) is a homomorphism)
then ¢* : Maps(L,Z) — Maps(L',Z), f — f o maps the subring Int(L,Z) into Int(L’,Z) hence
induces — by extension of scalars — a ring homomorphism ¢* : Int(L, R) — Int(L/, R). In particular
if L' C L and ¢ is the inclusion then we denote ¢* by Int(L, R) — Int(L', R), f — f|r- and call it
restriction. If L = L' and ¢ : L — L is the translation by a fixed element A € L then we denote o*
by 7 (hence we have 7)\(f)(v) = f(v+ A) for all v € L). The map 7 : Int(L, R) — Int(L, R) will
be called translation (by A).

Lemma 2.2. (a) Let L' C L be a subgroup of the same rank n and assume that the index d = [L : L]
is invertible in R. Then the restriction Int(L, R) — Int(L', R), f — f|p/ is an isomorphism.

(b) For every polynomial function f : L — R there exists finitely many polynomial functions
fiyoo s frog1, -, 9r 1 L — R such that

(7) ) =D a(Nfi
=1

for every A € L.

Proof. (a) We choose basis A1, ..., A, of L and positive integers di, ..., d, such that di\1,...,d,\p
isa basis of L' sothat d =dy-...-d,, . If P(Xq,...,X,) € Q[Xy,...,X,] is a polynomial such that
P(dixy,...,dyzy) € Z[1/d] for every (z1,...,x,) € Z™ then, clearly, we also have P(z1,...,z,) €
Z[1/d] for every (x1,...,2,) € Z". Thus the restriction Int(L,Z[1/d]) — Int(L', Z[1/d]), f — fl|v/
is an isomorphism. Tensoring it with R yields the assertion.

(b) It suffices to consider the case L = Z", R =Z and f = (%) In this case the assertion follows

()= .2 L G

from

Here we have equipped (Z>¢)" with the following partial order: for k = (k1,...,kn),l = (l1,...,1ly) €
(Z>o)™ we define k < [if k; <[;foralli=1,...,n. O

Definition 2.3. Let R be a ring. The R-module of (R-valued) polynomial distributions on L is
defined as
Dpoi(L, R) = Homz(Int(L, Z), R) = Hompg(Int(L, R), R).
For 1 € Dpoi(L, R) we write [; f(A)du()) for the evaluation of y at f € Int(L, R). Convolution

defines a ring structure on Dpo1(L, R). Concretely, the product p; * p of two elements g1, o €
Dpoi(L, R) is defined as usual by

0 [ 1) = [ ([ 100+ 2a)da0)) din o)
for every f € Int(L,R). Note that by Lemma (b) the map A\; — [ f(A1 4+ X2)dua(X2) lies

again in Int(L, R), so that is well-defined. More precisely, for f € Int(L, R) we can choose
fiseoos fryg1s -y gr € Int(L, R) such that holds. Then

L—R, M+ / f(Al + )\Q)d,UQ()\Q)
L

is the symbolic notation for the element Y7, ([} fi(A2)du2(X2)) gi of Int(L, R).
7



Example 2.4. Let L be a lattice of rank n and let R = K be a field of characteristic 0. Let
&,...,é, + L — K be a K-basis of Hom(L, K). Then &,...,&, can be viewed as elements
of Int(L, K). In fact elements of Int(L, K) can be written as polynomials in i,...,&,, i.e. the
collection of functions £™ := [[;_; {"™ for m € (Z>o)" form a K-basis of Int(L, K). Hence there

exists unique elements z1,..., 2z, € Dpol(L, K) given by zz(fm) = 1if m = e; and 2z;(§™) = 0 if
m # e;. For a = (ay,...,a, ) (Z>0)™ the element 2% := 2" -...- 28" € Dpoi(L, K) is characterised
by

aemy _ J @l ifa=m,
9) (") = { 0 otherwise

(with a! = [],_; ag!) for every m € (Z>o)".

Let R[L] denote the R-group algebra of L. For A\g € L we let d\, € Dpoi(L, R) be the Dirac
distribution, i.e. for f € Int(L, R) we have [, f(A)ddx,(X) = f(Xo). Since 0y, x 6x, = 0,4, for all
A1, A2 € L the map L — Dpoi(L, R), A — 6, extends to a ring homomorphism

(10) 5R[ ]—)DpolL R ZCL}\ +—>Za>\ (5)\.
XEL XEL
The collection of translations 7y for A € L induces an R[L]-module structure on Int(L, R) given by

*: R[L] x Int(L, R) — Int(L, R), (Z a)\[)\]> wfi=> ax-7af)

XeL AeL
Note that for p € Dpoi(L, R), @ € R[L] and f € Int(L, R) we have

(11) (/f )O)=uL@HfXMdu0)

By R[L] we denote the completion of R[L] with respect to the kernel I(L) of the augmentation
map ¢ : R[L] = R,> . ax[A\] = X ycp an, i.e. we have
RIL] = tim RIE)/ (1"

Proposition 2.5. The homomorphism induces an isomorphism of R-algebras
R[L] — Dpol(L, R).

Proof. For m € Z>( we let Int""(L,Z) be the submodule of Int(L,Z) of integer-valued polynomial
functions f : L — Z of degree < m, i.e. the total degree of the polynomial P(Xy,...,X,) in
Definition [2.1]is < m. Put Int"™ (L, R) := Int" (L, Z) ® R, Dpol.m(L, R) := Hom(Int™(L,Z), R) and
let
(12) R[L] — Dpoim(L, R), ZaA — Za,\ res(dy)

AL AL
be the composite of with the obvious restriction map res : Dpoi(L, R) = Dpol.m (L, R). We will
show that is surjective with kernel I(L)™*!. Hence it induces an isomorphism
(13) R[L)/I(L)"™*" — Dyoim(L, R).

Passing to the inverse limit over all m yields the assertion.

For the surjectivity of it suffices to consider the case L = Z". Let p € Dpo1m(Z", R) and let
E be the set of k = (ki,...,kn) € (Z>0)" such that »_ " ; k; < m. To see that y lies in the image
of it is enough to show that there exists (aﬁ)kea € RZ such that

(14) po= Zakres((sﬁ)

keE
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Since the polynomials (X), with [ € Z form an R-basis of Int"*(Z", R), an element ( ) € RE

satisfies (|14)) if and only if it is a solution to the system of linear equations

- () - Salf) vies

ke=

For that we equip Z with the lexicographic order, i.e. for k = (k1,...,kn),l = (l1,...,1,) we have
k < L if there exists an index ¢ € {1,...,n} such that k; =[; for j =1,...,i — 1 and k; < l;. Note

that
E\ [0 ifk
1) |1 ifk

so that ((%))kl is an upper triangular matrix with entries in Z and diagonal entries = 1. Hence
) klEE

A
I~ 1o~

the system ofieiquations ) has a unique solution (ak) - € R=.

To show that I (L)erl hes in the kernel of (12 we argue as in ([7], Lemma 4.3). Note that for
A€ Land f € Int™(L,R) we have ([A\] — [0]) x f = 7a(f) — f € Int™ (L, R). It follows that
I(L) » Int™(L,R) C Int™ (L, R), hence I(L)™! x Int™(L,R) = 0. Since by (1)) we have for
a € I(L)™" and f € Int™(L, R)

/ F(\) dé(a / (ax )N ddo(A) = 0

we conclude that I(L)™*! lies in the kernel of (12).

We have shown that induces an epimorphism . To show that the latter is an isomorphism
it suffices to remark that both source and target are free R-modules of the same rank. Since
Int™ (L, R) is a free R-module of rank §(Z) = (™"}, the same is true for its dual Dyo1m(L, R). On
the other hand the choice of a basis A1, ..., A, of L yields an isomorphism R[T:!, ... T = R[L]
hence an isomorphism

Rlt1,....ta]/(t1, ..., )" = R[L]/T(L)™
with ¢; := T; — 1 for i = 1,...,n. Thus R[L]/I(L)™" is a free R-module of rank ("™'") as well. O

The lattice L together with the choice of an orientation (i.e. an orientation on L) will be called
an oriented lattice. A Z-basis (A1,...,A,) of L will be called positively oriented if the induced
isomorphism Lr — R"™ preserves the orientation

Corollary 2.6. Let L be an oriented lattice of rank n. Then there exists a canonical isomorphism

7 R ifi= ’
Extiey) (B, Dpar(L, R)) = { 0 ZZ i

for every i € Z>.

Proof. This follows from Prop. and ([I], Thm. 3.25). We give a purely algebraic proof. First

we assume that L = Z"™ so that R[Z"]| can be identified with the ring of Laurent polynomials in n

variable R[T!, ... T, I(L) with the ideal (t1, ..., t,) with t; := T, — 1 and Dyo(Z", R) = R[Z"]

with the power series ring R[t1,...,t,] = lim R[T=Y, ... T/ (t1,. .., tn)™. We have to show
—m

(16) Ext R,R[t1,....ta]) = { R ifi=n,

i
R[letlvaTitl}(

0 ifi#n.
Since t := (t1,...,t,) form a regular sequence of R[T:!, ... T:¥!] we have (see [23], Cor. 4.5.5 and
Ex. 4.5.2) | |
Extz%[Tﬂ Ti1](R M) = Hi(¢, M) = H,_;(t, M)
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for any R[T:, ..., TF-module M and any i € Zsq (here H®(t, M) and H,(t, M) denote Koszul
cohomology and homology). Note also that t1,...,t, forms a regular sequence of R[t1,...,t,] and
that we have

Rlt, .. ta] /(1) 2 R[t, - o taa]/(tre e b)) 2 ... 2 R[]/ (1) = R.

Thus follows from ([23], Cor. 4.5.4).
Now assume that L is an arbitrary lattice of rank n. The choice of a basis A = (A1, ..., A,) of L
induces an isomorphism

(17) EXt’rIL%[L] <R, DpOI(La R)) = EXtE[Z”} (R, Dpol (Zn, R)) =~ R.

Changing the basis changes the isomorphism by the factor sign(det(A)) where A € GL,(Z) is the
associated transition matrix. Thus if L is oriented and if we choose a basis that is positively oriented
then the isomorphism does not depend on this choice. ]

We finish this section by introducing generalizations of Definitions and to (left) L-sets.
Recall that the latter is a set H together with an L-action + : L x H — H, (A, h) — A+ h. The
example the reader should have in mind is that L is a subgroup of a rational vector space V and
H is an L-stable subset of V, i.e. we have A+ h € H for every A € L and h € H. An L-subset of H
is a subset H' C H that is stable under the L-action. An L-set H will be called finite if there are
only finitely many L-orbits. Thus a finite L-subset H’ of an L-set H is an L-subset that is finite
as an L-set.

Definition 2.7. Let H be an L-set.

(a) A map f: H — Z is called an integer-valued polynomial function if for every of h € H and
every Z-Basis A1, ..., A\, of L there exists a polynomial P(X1,...,X,) € Q[X1,...,X,] such that

fl@idi+ ...+ zp \n +h) = P(x1,...,20) V(z1,...,x,) € Z".

The ring of integer-valued polynomial functions f : H — Z will be denoted by Intp(H,Z) (or by
Int(H,Z) for short). More generally for an arbitrary ring R we define Inty (H, R) := Int; (H,Z)®R.
An element f € Inty(H, R) will be called an (R-valued) polynomial function on H and we use again
the symbolic notation f: H — R.

(b) An integer-valued polynomial function f : H — 7 is said to be of bounded support if its support
is contained in a finite L-subset H' C H, i.e. if there exists finitely many elements hy, ..., hy, € H
such that supp(f) = {h € H | f(h) # 0} C UL, L + h;. The ring of integer-valued locally
polynomial functions H — 7 with bounded support will be denoted by Inty, ,(H,Z) (or simply by
Inty(H,Z)). For a ring R we put Inty, ,(H, R) :=Inty ,(H,Z) ® R.

(¢) The dual of Inty, ,(H, R) will be denoted by
Dpol(H7 R) = Dpol,L(Hv R) = HomZ(Intva(H, Z), R) = HOmR(IDtLb(H, R), R)
It is called the module of R-valued polynomial distributions on H.

Clearly for a sublattice L' of L we have Intz,(H,Z) C Intz/(H,Z) and Inty, ,(H,Z) C Inty ,(H, Z).
Also for an L-subset H' C H there exists canonical ring homomorphisms
(18) Inty(H,Z) — Inty (H',Z), f+ flgr 7Restriction”,
(19) Inty(H',Z) — Int(H,Z), f+ fi 7Extension by zero”

that map Intz, ,(H,Z) (resp. Inty,(H',Z)) into Inty, ,(H', Z) (resp. Inty ,(H, Z)).
10



Remarks 2.8. (a) Let ¢ : Hi — Hs be an L-equivariant map between L-sets. The map ¢* :
Maps(Hs,Z) — Maps(H1,Z),f + f o ¢ maps Inty(Ha,7Z) into Inty(Hy,Z). Moreover if ¢ is
injective then ¢* maps Inty, ,(H2, Z) into Inty, ,(H1,Z), i.e. it induces a homomorphism of L-algebras
©* : Inty(Ha, R) — Inty(Hy, R). We denote the dual map by

Px - Dpol,L(H17 R) — DpOI,L(H27 R)

(b) In particular for an L-set H and A € L the map ¢ : H — H,h +— A+ h is L-equivariant. The
induced homomorphism of R-algebras 7y := ¢* : Int(H, R) — Int(H, R) will be called translation
by A. Similar to Lemma (b) for every polynomial function f : H — R there exists finitely many
polynomial functions fi,..., fv : H — R and g¢1,...,gn : L — R such that

T
(20) () =D s
i=1
for every A € L. Moreover if f has bounded support then fi,..., fy can be chosen to have bounded

support as well. The collection of translations 7 for A € L induce an R[L]-module structure on
Int(H, R). It will be denoted by * : R[L] x Int(H, R) — Int(H, R).

(c¢) By using property for p € Dpol(L, R) and v € Dy 1,(H, R) one can define the convolution
pxv € Dpol 1,(H, R) similar to namely we have

[ g = [ ([ 10 mane) av)

for every f € Intz;(H, R). Thus the convolution product defines on Dy r(H, R) a Dyol(L, R)-
module structure.

(d) Let H be an L-set and let H = J;c; H; be a covering by disjoint L-subsets. The family of
maps Intioe p(Hs, Z) = Intioe (H, Z), fi — (fi)1 induces an isomorphism

(21) P It o (Hi, Z) — Inty 4 (H, Z).

el
For that it suffices to verify surjectivity. Let f € Inty ;(H,Z) there exists a finite L-subset H' of
H such that supp(f) C H'. Note that the set J:={i € I | H;N H' # 0} is finite since H' has only

finitely many L-orbits. If we put f; := f|g, for i € I then we have f; = 0 except possibly for i € J.
It follows that (fi)icr € @;c;Intr p(H;, Z) is mapped to f under (21)). O

Locally polynomial functions and distributions. In the following V' denotes a Q-vector space
of dimension n (in Prop. 2.15] we assume moreover that V' is oriented). Recall that £Laf(V) is the
set of all subgroups L C V that are free-abelian of rank n. Elements of Lat(V') will be called
lattices. We fix a non-empty subset .Z of Lat(V') such that we have

(22) LinLy, Li1+Lye¥ for all Lqi,Lo € Z.

For such .Z we put
A=A2)= L
Lez
Note that A is a subgroup of V. For such data we consider the group

Autg(A) = {a € GL(V) | a(L),a (L) € XV L € £}.

The elements of Aut #(A) map A onto itself, i.e. we have Aut »(A) C GL(A). Let I' be a subgroup
of GL(V). The set . will be called I'-stable if I' C Aut »(A).
11



Examples 2.9. (a) Let F' be a number field of degree n over Q with ring of integers Op. The
set of all fractional ideals Z = Latp, (F) of F is a closed F*-stable subset of Lat(F) and we have
A = F. More generally, the set of fractional ideals Z° of F' that are coprime to a fixed finite set S of
nonarchimedean places of F' is a closed subset of Latop, (F'). If Og = {z € F | ordy(z) > 0Vp € S}
is the semilocal subring of F' associated to S then we have A(Z°) = Og and I is Oj-stable.

(b) More generally let n = dm, let F' be a number field of degree d over Q and let V' be a m-
dimensional F-vector space. Let S as above be a finite set of nonarchimedean places of F' and let
M be a finitely generated Og-submodule of V' with rankp, M = m, i.e. we have M ®p4 F'= V.
Then we consider the set £ = Z(M) of finitely generated Op-submodules L C M satisfying
L ®p, Os = M. It is a closed GLo,(M)-stable subset of Latp, (V) and we have A(.Z) = M.
For later use we note that the set £ (M) admits an adelic description (similar to the description
of Z% as 79 = (A}?)* / U}g ). More precisely there is a canonical transitive action of the group

GLA?(A? ®og V) on L(M): given L € £ (M) and g € GLA?(A? ®og V) we define g - L by
g-L = g(L®o, 0%) N M where O° := [Togs,vi00 Ov (the intersection is taken within V ®p A]Sc)
Note that the stabilizer of L € £ (M) is the group GL@S(ES) where L = L R0 OS. O

Let H be a (left) A-set, i.e. H is a set together with a A-action A x H — H, (A, h) — A+ h. For
L € £ we say that a subset H C H is L-stable if A+ x € H for every x € H and A € L. We put

Open(H) = Openy(H) := {H C H | H is L-stable for some L € Z}.

An element H € Open(H) will be called finite if H is L-stable and has only finitely many L-orbits
for some L € £. The collection of finite elements of Open(#) will be denoted by Openg, (H). Also
for H € Open(H) we let Openg, (H) be the collection of subsets H' C H with H' € Openg, (H).

We are now in the position of defining R-valued locally polynomial functions and locally poly-
nomial distributions with respect to the family of lattices .Z.

Definition 2.10. Let H be a A-set and let H € Open(H).

(a) A map f: H — Z will be called an integer-valued locally polynomial function (with respect to £)
if there exists L € £ such that H is L-stable and so that f € Intp(H,Z). The ring of all integer-
valued locally polynomial functions H — 7 with respect to £ will be denoted by Int.y 1o.(H,7Z)
or simply by Inty.(H,Z). For a ring R we define Intyoc(H, R) := Intjoe(H,Z) @ R. Elements of
Intyoc (H, R) will be called R-valued locally polynomial functions on H.

(b) An element f € Intyo.(H, Z) is called an integer-valued polynomial function with bounded support
if there exists a subset H' C H with H' € Openg, (H) and supp(f) C H'. The abelian group of
locally polynomial functions H — 7 with bounded support will be denoted by Intg ocp(H,7Z) =
Intioey(H,Z). For a ring R we define Intioe p(H, R) := Intioe (H,7Z) @ R.

(¢) The dual of Intioe p(H, R) will be denoted by
Dlpol(I{a R) = DZ 7lpol(H> R) = HomZ(Intloc,b(H7 Z)> R) = HomR(Intloc,b(Hv R)7 R)
It is called the module of locally polynomial R-valued distributions on H with respect to £ .

(d) An additive map p : Into.(H,Z) — R will be called an R-valued locally polynomial distribution
on H with bounded support, if there exists a subset H' C H with H' € Openg,(H) such that
wu(f) depends only on f|gys, i.e. there exists an additive map p' : Intyoc(H',Z) — R such that
w(f) = 1 (fla) for every f € Intioc(H,Z). We denote by Dipo1p(H, R) the module of R-valued
locally polynomial distributions on H with bounded support.
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Note that Intjoc p(H, R) is an ideal in Intjoc(H, R) (that Intjoe 5(H, R) C Intioe(H, R) follows from
the fact that Intioc(H, Z)/ Intiocp(H, Z) is torsionfree). Let H € Open(H) and assume that H is
L-stable for L € . 1f we put £(L) :={L' € £ | L' C L} and consider it as a partially ordered
set (ordered by inclusions) then we have

Intioe p(H,Z) = lim Intr ,(H,Z) and Intyo.(H,Z) = lim Int;/ (H,Z).
— Les(L) — ez (L)
It follows that for a ring R we have
(23) DlpOI(H’ R) - 1<E1L’€=7(L)0pp DPOLLI(H’ R)
Note that for an arbitrary coefficient ring R an element Int),.(H, R) defines again a function H — R.

For yi € Dipoi(H, R) (resp. pu € Dipoip(H, R)) we write [, f(h)du(h) for the evaluation of u at
f € Intigep(H, R) (resp. at f € Intoo(H, R)). More generally, for an R-Algebra A we have an
evaluation pairing that will be denoted again by

(24) Dlpol(Ha R) X Intloc,b(HvA) — A7 ()ua f) = / f(h)d:u(h)
H
Let H', H € Open(H) with H' C H. Again there exists canonical ring homomorphisms
(25) Intyoc(H,Z) — Intyoc(H',Z), f+ flgr 7"Restriction”,
(26) Intio.(H',Z) — Intjoc(H,Z), f~ fi 7Extension by zero”

that map Intiee,(H,Z) (resp. Intioep(H',Z)) into Intioep(H',Z) (resp. Intioep(H,Z)). Dually, we
obtain maps

(27) Dipol(H',R) — Dipoi(H, R), p+— w “Extension by zero”
(28) Dlpol(Hv R) — Dlpol(Hlv R), wr~ pulp 7 Restriction”

i.e. and are characterized by
| smanm) = [ (fad@ydney, [ om0 el = [ o)

for all u € Dipor.r.(H', R), f € Intioep(H, R) and v € Dipol,r.(H, R), g € Intioep(H', R). Moreover
note that also induces a map

(29) Dipolp(H', R) — Dipoip(H, R), p+> ”Extension by zero”
Note that for H € Open(H) we have
Intloc,b(Ha Z) = lim InthC(H/, Z)

— H'eOpeng, (H)
where the transition maps in the limit are given by . It follows

30 Dipol(H, R) = li Dipol(H', R).
(30) o ) EH/GDpeﬂﬁn(H)Opp ol )

Moreover, we note that for the R-module Dy, 4(H, R) we have

Dipos(H, R) = lim Diyo(H', R).
lpol,b( ) — i eopeng, (H) lpol( )
Here the transition map Di,o1(H], R) — Dipol(Hj, R) for H{ C H) C H with H/, H) € Openg, (H)
is the map .
Let H € Open(H) and let H = J,c; H; be a covering of H by disjoint subsets of Open(H). The
family of maps Intigcp(H;, Z) — Intioe p(H, Z), f; — (fi)1 induces a homomorphism

(31) P tioe,p(Hi, Z) — Intioey(H, Z)
i€l
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and by passing to duals a homomorphism

(32) Dypol(H, R) — HDlpol(Hia R), p— (ulm,)ier
iel
for any ring R.

Lemma 2.11. Let H € Open(H) and let H = |J,; H; be a covering by disjoint subsets of Open(H).
If there exists L € £ such that H; is L-stable for everyi € I then and are isomorphisms.

Proof. 1t suffices to prove the surjectivity of . For a given f € Intjoc(H,Z) we can choose
L € 2 sufficiently small such that all H; are L-stable and such that f € Inty,(H,Z). Now the
assertion follows from Remark (d). O

Remark 2.12. Note that under the assumptions of the Lemma the collection of maps Dipo1s(H;, R) —
Dipolp(H, R), pp — u for ¢ € I induces an isomorphism

@Dlpol,b(Hi, R) — Dipo1p(H, R).
icl
To discuss further functorial properties of the above Definitions [2.10| we introduce the notion of
an .Z-affine map.

Definition 2.13. Let H1, Ha be A-sets. A map ¢ : H1 — Ha will be called an £ -affine map if
there exists o € Aut o (A) such that (A + h) = a(X) + ¢(h) for every A € A and h € H;.

Remark 2.14. Let H = A be equipped with the obvious structure as a A-set. An Z-affine map
@ : A — A is an automorphism composed with a translation. Thus every Z-affine map ¢ : A — A
is a bijection. Hence the Z-affine maps ¢ : A — A form a group — denote by Aff »(A) — and we
have Aff »(A) = Aut»(A) x A.

Let ¢ : H1 — Ha be an Z-affine map between A-sets. Note that for H € Open(Hz) we have
o Y (H) € Open(H1) and that ¢* : Maps(p ' (H),Z) — Maps(H,Z), f + f o ¢ maps the subring
Intoc(p 1 (H),Z) into Intjoc(H,Z). Now assume that ¢ : H; — Hso is injective. In this case
we have p~1(H) € Openg,(H;) for every H € Openg,(Hz). It follows that the homomorphism
©* : Maps(¢~Y(H),Z) — Maps(H, Z) for H € Open(H2) maps the subring Intc (¢~ (H),Z) into
Intioep(H, Z). By passing from ¢* : Intjoep(¢ 1 (H), Z) — Intioep(H, Z) to duals we obtain a map

(33) Px - DIOC(H’ R) — Dloc(‘P_l(H)a R)

Now assume that H = A and let H = L € .Z. Then Dipo1(L, R) carries a natural ring structure
given by the convolution and the map

(34) Dlpol(L7 R) — Dpol(L7 R)

dual to the inclusion Int(L, R) < Intjo.(L, R) is a ring homomorphism. Since the Dirac distri-
butions dy, A € L lie in Di,o1(L, R) the map L — Dipei(L, R), A — 0y extends to an R-algebra
homomorphism R[L] — Dipe1(L, R) and is a homomorphism of R[L]-algebras.

The R-module Di,0(A, R) is equipped with a left action of the group Aff #(A) defined by the
homomorphisms (33)), i.e. it is equipped with a natural R[Aff ¢ (A)]-module structure. Similarly one
defines an R[Aff »(A)]-module structure on Dy (A, R) so that the canonical map Diper (A, R) —
Dipol(A, R) is Aff #(A)-equivariant.

Now assume that V' is oriented. This provides also each lattice L C V with the structure of an
oriented lattice so we can apply Corollary The Aff(L)-action on Ext’}%[ L}(R, Dipol(L,R)) = R
is not trivial but is given by the sign character, i.e. the homomorphism
(35) e: Aff(V) — {£1} =7Z%, (a,v) > sign(det(a)).
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Thus Corollary [2.6] can be restated as

i R ifi=mn,
Extlyn) (R, Dpa(L, ) = { 1 3550

when taking into account the Aff(L)-actions. Similarly, we have

Proposition 2.15. For every ¢ > 0,

Bty (R DA, R0) = { ¢ 120

as R[Aff ¢ (A)]-modules.
For the proof we need the following obvious
Lemma 2.16. For a ring R and L', L € & with L' C L the canonical map
ZL) @zppy Int(L', Z) — It (L, Z), a® f—ax*f

and its dual
DPOLL' (L, R) — HOHIR[L/] (R[L], Dpol(L,a R))

are isomorphisms.

Proof of Prop.[2.15 Firstly, note that by we have
Dlpol(Av R) = lim Dlpol(L7 R)

— Legorp

We fix a lattice Lo in .Z. The homomorphism of R[Lo]-modules Dipo1(Lo, R) — Dipol(A, R) (see
(27)) induces a homomorphism of R[A]-modules

(36) Dipoi(A, R) — Hompry)(R[A], Dipor(Lo, 1)).

It is an isomorphism by Lemma Indeed if R is a system of representatives for the Ly-cosets
in A then the map can be identified with the map for the covering A = |Jycr A + Lo.
Moreover by and Lemma we have

Dipol(Lo, R) = @Leg(%)opp Dyol,r(Lo, R) = lglLeg(Lo)opp Hom gz (R[Lo], Dpoi(L; R))
hence
(37) Dipoi(A, R) = Hompg, (R{A]’@Leg Loy Homp,r) (R[Lo], Dpol, (L, R)))
= @LGXOPP Hompz) (R[A], Dpor(L, R)).

By Cor. and Shapiro’s Lemma we have
R(e) ifi=n,
0 ifi#n
for every i > 0 and L € Z. On the other hand and the first equality in together with
(23], Thm. 3.5.8) imply that there exists a short exact sequence

(39) 00— 1m®  Bxtil (R, Dipo(L, R))(€) — Extiyy (R, Dipai(A, R)(e))

(38)  Extiya (R, Hompp)(R[A], Dpoi(L, R))) = Exti (R, Dipol(L, R)) = {

— Le.gopp

— @Legol)p Ext’R[L}(R, Dipol(L, R))(e) — 0.
From the second equality in we deduce that the first term in vanishes for every ¢ and the
third for every ¢ except for i = n when it is & R. O
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Change of .Z. We also need to investigate the effects of changing the subset ¥ C JLat(V) in
specific circumstances. For that let .2 and %5 be non-empty closed subsets of Lat(V') and put
A; = A(Z) for i = 1,2. We assume that Ao N Ly € % for every L) € £ and that

fl —>$2, L1F—>A2ﬂL1

is a bijection. This implies in particular that A; © As. We consider a Aj-set Hi and a As-subset
Ho C Hi. Let Hy € Open(H1) and let Ly € £ such that H; is Li-stable. Then Hy := H; N Ha
is Ly := Ly N Ay-stable. Moreover if f € Intr, (Hy,Z) (resp. f € Inty, y(H1,Z)) then flg, €
IntLQ(HQ,Z) (resp. f|H2 S Inth,b(Hz,Z)).

It follows that the map
(40) Int g, 1oc(H1, Z) — Int g, 1oc(Ha2, Z), [ fla,
is well-defined for every H; € Open(H1) and Hy € Open(Hz) with Hy C Hy. Moreover maps
the subring Int ¢, 1ocp(H1,Z) of Intg, 10c(H1,7Z) into Int.g, 1ocp(Ha2,Z). Thus, dually, we obtain
maps
(41) Dy, 1polp(H2, R) — Dy 1polp(Hi, R), p=
(42) D4, 1pol(H2, R) — Do, 1pol(H1, R), =

that are characterized by
F(h) dynin) = [ (Flu)(ha) (i)
Hl H2

for all € Dy, 1porp(Ha, R) (resp. i € Dy ipol(Ha, R)) and f € Intg, 1oc(Hi,Z) (resp. f €
Int ¢, 10cb(H1,Z)). In particular for Hy = H; and Hy = Ha we obtain maps

(43) D, 1polp(Ha, R) — Dy iporp(Hi1, R), B
(44) Dy, poi(H2, R) — Do, 1pol(H1, R), My

Under certain conditions on .4, %, H1, H2 and R these are isomorphisms.

Proposition 2.17. Assume that

(i) The index d := [Ly : Aoy N Lq] is independent of the choice of L1 € 4.

(i) The action of A; on H; is faithful for i = 1,2 and the map Aa\Ho — A1\H1, Ao +h— A1+ h
1s bijective.

(11i) The index d = [Ay : Ag] is invertible in R.

Then the maps and for Hy = H1 and Ho = Hao are isomorphisms.

Proof. Note that (i) implies d = [A; : Ay]. By Lemma [2.11] and Remark it suffices to consider
the case when Ag acts freely and transitively on Hy (hence A acts freely and transitively on H; as
well by (ii)). Thus we may assume H; = A; for i =1, 2.

We fix L1 € 4 and put Lo = L1 N As. As remarked in the proof of Prop. [2.15] we have

Dy, 1pol(Ai;, R) = Hompr,(R[A:], Dy 1pol(Li, R))
for ¢« = 1,2. Similarly, using Remark one can show that
Dy, 1pop(Aiy R) = R[A;] @g(1,) Dz, 1pol(Li, R).
Thus it suffices to show that the map for Hy = L1, Ho = Lo, i.e. the map
Do, 1pol(L2, R) — Dy apot(L1, R),  po =

is an isomorphism.
16



Firstly, note that (iii) and Lemma (a) imply that Dpo1(La, R) = Dpol(L1, R), it — p is an
isomorphism. Note also that the map % (L1) — %(L2), L} — Ly N L is a bijection. Moreover
note that we have by we have

foi 71p01(Li, R) = @L;ey(m)opp Dpol,LfL- (Lla R)

for i = 1,2. Thus if we fix L} € Z(L1) and put L} := Ly N L) then it suffices to show that the
canonical map

(45) Dpol,L’Q (LQ, R) — Dpol,L’l (Lla R)

is an isomorphism. From (i) we deduce that R[Ls] ®pg(r;) R[L}] & R[L1]. Since — again by Lemma
(a) — the map Dpoi(Lh, R) = Dpoi(L), R), v — u is bijective, it induces an isomorphism

o

(46)  Homppy)(R[La), Dyot(Ls, B) — Hompyry)(R[Lal, Dpat(L}, R)
= Hompgp)(R[Le] ®pg(ry) RILY], Dpar(Ly, R))
= HomR[LU(R[Lﬂ,Dpol( L R))
According to Lemma it can be identified with . .

We apply Prop. in the following situation. As in Example (b) let F' be a number field
of degree d over Q, V a m-dimensional F-vector space, S a finite set of nonarchimedean places
of F and M C V a finitely generated Og-submodule of V' with rankp, M = dimp (V). Let
2 C Latp, (V) be the set of L € Latp, (V) with L C M and L ®p, Os = M, i.e. L generates
M as an Og-module.

Corollary 2.18. Let v € V and let h be the order of v+ M in V/M, i.e. h is the minimal positive
integer such that hv € M. If h is invertible in R then there exists natural isomorphisms

folpol,b(v + Ma R) = folpol,b(Ma R)7 ,folpol(v + M, R) = Dﬁ%pol(-/\/la R)

Proof. Let M’ C V be another finitely generated Og-submodule of V' with M’ D M and put
L' ={L € Latp,(V)|L C M L'®p, Og = M'}. We remark that the map ¢ — &, L' —
L’'NM is a bijection and that L' /L — M’/ M, A+ L — A+ M’ is an isomorphism for every L' € &’
and L := L' N M (these facts can be easily seen using the adelic descriptions of the sets ¢’ and
Z given in (b)). If we choose M’ := + M := {w € V | hw € M} then we see that conditions
(i) and (ii) of Prop. hold for 4 = &', &5 := 2L, H1 = M’ and Hy := v + M. Moreover the
index [M': M] is a divisor of A" with n = dm hence is invertible in R so (iii) holds as well. Thus
we can apply and obtain

Dy ipolp(v + M, R) = Dyr jpoip(M', R), Dy 1poi(v + M, R) = Dy jp(M', R).
Since v € %M was arbitrary the assertion follows. O

Remark 2.19. Note that the only possible prime divisors of h are the primes numbers lying below
the places in S.

3. LATTICE TOPOLOGY, SHEAVES AND COHOMOLOGY

(&, f)—spaces and lattice topology. As in section [2| we fix a finite-dimensional Q-vector space
V and a non-empty subset . C Lat(V) with the property (22)). Recall that A = A(L) = U co L
is a subgroup of V. We also fix a subgroup I' C GL(V') such that .# is I-stable and put I =
[ x A C Affz(A). Elements of I' will be denoted by 7 = (v, A) where v € ' and A € A.
We associate to this data the following category C(.ﬁ,f). Its set of objects is .. For Lq,
Ly € % a morphism ¢ : L1 — Lo is a triple ¢ = (7, L1, L2) € [ x % x & with v(L1) C Lo
17



if ¥ = (y,A). The composition of two morphisms @1 = (31, L1, L2) and ¢ = (72, Lo, L3) is the
morphism g 0 p1 := (Y2 - 41, L1, L3). Given a morphism ¢ = (7, L1, L2) with 7 = (v, \) we define
its degree by

deg(p) := [L2 : 7(L1)].
The degree is multiplicative, i.e. we have deg(p2 o v1) = deg(yp2) - deg(y1) for two morphism
p1: L1 — Ly and ¢ : Ly — L3 in C(Z,T"). Morphisms of the form ¢ = (1, L1, Ly) (i.e. when the
first component of ¢ is the neutral element in I') will be denoted by
(47) T = TLy,Ly 2L1 ‘—)LQ.

For these morphisms we have deg(nr, 1,) = [L2 : L1]. For L € £ and 3 = (y,\) € I we denote
the morphism (7, L,~(L)) by
(48) 5 L (L),
Consider the special case when v = 1, i.e. when ¥ = (1, \). Then the morphism will be denoted
by

A 0 L — L.

We note that an arbitrary morphism ¢ = (%, L1, Le) with ¥ = (y,A) € [ can be factored as a
composition of morphisms of the type and . Indeed, we have

P = Tx OMLy 1 (La) = Ty(L1)La © Vo-
We consider a functor X : C(.Z,T) — Top. For L € £ we will write X instead of X(L). The

image of a morphism ¢ : L1 — L9 under X will be denote by ¢ : X1, — X1, as well. In particular
for L,Ly, Ly € ¥ with L1 C Ly and 7 = (7, A) € I' we obtain morphisms

7[':7TL1,L2:XL1 —)XL2 and &*:XL—>XW(L)-

Definition 3.1. (a) A functor X : C(Z,T) — Top will be called a (&, T)-space if the map
v : X1, = X1, is a covering of degree deg(yp) for every morphism ¢ : Ly — Lo in C(Z, f)

(b) A (ZL,T)-space is a (L, T)-space such that the map X; — Xy, induced by the morphism
A« : L — L is the identity for every L € £ and A € A.

(¢) A morphism of (E,f)—spaces f X — Y is a morphism of functors such that for every
morphism ¢ : Ly — Lo in C(£,T') the diagram

XLl a ? YLI

ol

XLz s ? YL2

is cartesian. The set of morphisms X — Y will be denoted by Homg(X,Y).

For a (¥ ,f )-space X we are going to associate a certain site which allows us to consider I-
equivariant sheaf on X. For that we put

~

X :=lim Xy,
—Le¥

i.e. as a set X is the projective limit of the inverse system consisting of the sets Xy for L € .Z
and the maps 7, 1, for L1, Ly € £ with Ly C Ly. For L € .Z we let 7y, : X — X7, denote the
canonical projection. A subset S C X will be called L-stable if it is of the form S = 7, '(S’) for a

subset S’ € X. The set X is equipped with a natural -action induced by the collection of maps
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{Y«: Xp — XV(L)}Lezaef' Indeed, given 3 = (7, \) € I' we define the map 7- : XX, 271
by
(49) yo=lim (3, Ly(L): X =lim X, —lim X=X

Rather than equipping X with the projective limit topology we consider a much coarser notion of
open sets and coverings on X. Namely, a subset U of )/(\' will be called open if and only if there
exists L € % and an open subset W of X with U = 7, }(W). Equivalently, U is open if and only
if it is L-stable for some L € .2 and if w1, (U) is open in Xz. We let Open(X X) be the collection of

all open subsets of X. For an open set U of X a family of open subsets {U;};c; of U will be called
a covering of U if {U;}icr is a covering in the naive sense (i.e. we have U = J,c; U;) and if there
exists L € £ such that every U; is L-stable. Equivalently, there exists an open subset W of X,
and an open covering {W;};er of W such that U = 7, (W) and U; = n; (W;) for all i € I. The
collection of all coverings of U will be denoted by Cov(U).

Lemma 3.2. The triple ()?,Dpen(X), Cov) is a site (in the sense of Def. (b) of the appendix).

Proof. One easily checks that for open subsets U,V C X both UUV and UNV are open and that
for {U;}icr € Cov(U) we have {U; NV }ier € Cov(UNV). O

We refer to X = (X,Open(X),Cov) as the adelic space associated to X and say that X is
equipped with the lattice topology. Note that the map =y, : XX L is continuous as a morphisms
between sites for every L € .Z (in the sense of Def. - ) and that we have chosen Open(X) as
well as Cov to be minimal with this property. Note also that the map is continuous for every

v e . Thus X is equipped with a continuous T-action. Moreover if X is a (&, I')-space then the
A-action on X is trivial so that X is just equipped with a I'-action.

Remarks 3.3. (a) We remark that in general the lattice topology is not a topology in the usual
sense, i.e. the site (X, Open(X), Cov) is not a topological space. In fact although the union of a
finite collection of open subsets of X is open as well, this does not hold for the union of an arbitrary

collection of open subsets. Moreover (X, Open(X), Cov) is in general not a site in the sense of ([22],
Tag 00VH). Indeed, albeit conditions (3) and (4) of (8], Def. 2.4.1) hold, condition (5) usually does
not. Namely, if an open subset U C X together with {U;}ie; € Cov(U) and {Uij}jes; € Cov(U;)
for each i € I are given, then the collection of subsets {Uj;;i € I,j € J;} of U is in general not a
covering.

(b) We note that a morphism f : X — Y of (& ,f)—spaces induces a f—equivariant continuous
morphism

f:=Ilim fL)/(\'—>}/>
—LeZ
The obvious way to produce examples of (&, f)-spaces is as follows. Let X be a locally compact
Hausdorff space equipped with a free and continuous left I'-action (i.e. every 7 € I' acts as a
homeomorphism on X’). We denote the action of the subgroup A C I' on X additively. Assume

that every L € £ — viewed as a subgroup of A C [ - acts properly discontinuously on X. For
Le ¥ welet X;, ={L+x |z € X} be the set of L-orbits in X equipped with the quotient
topology. For a morphism ¢ = (7, L1, Ly) in C(Z,T) with 3 = (v, ) € I we consider the induced
map @y : XL1 — Xr1,, x+Li— -+ Lo. It is easy to see that the assignment L — X1, — ¢,
isa (%, F) -space X. Also any I- equivariant continuous map f : X — ) between locally compact

Hausdorff space with such I-actions induces a morphism of the associated (&, F) -spaces.
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In this example the site ()? , Open(X), Cov) admits a rather simple description. Namely the set
Open(X) can be identified with the collection of open subsets U C X that are stable under the
action of some L € .Z (i.e. we have L+U = U). Moreover the coverings of the site can be identified
with open coverings U = |J, U; in the usual sense such that there exists L € £ so that every U; is
L-stable. B

In principle all the specific examples of (£, T')-spaces considered below and that are relevant
to us arise in this way. However in the construction of the adelic Eisenstein classes in section W [
we have to consider certain morphism between (%, F) -spaces that do not stem from I'-equivariant
continuous maps f : X — ) as discussed above. Also we will later consider the notion of stalks for
a sheaf on the site X at truly adelic points. For these reasons it is not sufficient to work entirely
within the realm of spaces X with a I'-action as described above. Our construction of Eisenstein
classes is of a genuine adelic nature.

Examples 3.4. (a) We consider the above example for X = A equipped with the discrete topology
and the obvious I'-action. Thus for L € . we consider the quotient By, := A/L as a discrete space
and for a morphism ¢ = @51, 1, : L1 = Lo in C(Z,T") we consider the map

© =511, B, =A/L1 — Br, =A/Ly, X+ Ly —75()\) + L.

This is the simplest example of a (.Z, r )-space. It will be denoted by B = B¥ and will be called
the basic (£, T')-space. Note that we have
(50) B =1lim A/L = A.

—LeZ
We describe the lattice topology on A. For L € % define L = L := ker(my, : B=A- B, = A/L)
so that

L := lim L/L.

—L'eZ,L'CL
A subset U C A is open if and | only if there exists L € .% such that U is a union of L- cosets.
Equivalently, U is open if it is L-stable for some L € £, i.e. we have x + U = U for all z € L.
A covering of an open subset U C A consists of a covering | J;c;U; = U, so that there exists
L € & such that U; is L-stable for all i € I. Note that since A/L = A/L, an L-stable subset

of A is necessarily of the form U + L= Useu A + L for a unique L-stable subset 4 C A (namely
U=UnA). Thus the map

Open(B) — {U C A | U is L-stable for some L € £}, Uw—UNA

is bijective.

(b) If X is (& T )-space and Y a topological space equipped with a I'-action then we denote
by X x Y the following (£, T')-space. For L € £ we put (X xY)p := Xy xY. Also for
a morphism ¢ = @571, 1, : L1 — Lo in C(Z,T") with ¥ = (7,) we define the induced map
0: (X xY)r, - (X xY)r, by

QD:XLl ><YV—>‘XVL2 XY7 (l’,y)’—>(g0(.'lf),’yy)

Note that the projection onto the first factor pry : X x Y — X is a morphism of (.Z,f)-spaces.
Also if Y7 and Y3 are topological spaces equipped with a I'-action and if f : Y7 — Y5 is a continuous

I-equivariant map then id x f : X x Y] — X x Y3 is a morphism of (.Z, f)—spaces.
For example if we equip Ag = Vg with usual topology and the obvious I'-action then the product

(51) A=A% .= BxW%:C0(Z,T) — Top, L Ap=DBrxVe=A/LxWk
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1sa( ,T) )-space and { : B = B x {0} = B x Vg = A and prg : A = B x Vg — B are morphisms
of (£, T')-spaces. We call A the adelic (£,T')-space. We have
A=A x Vg

Note that the morphism prg : A — B induced by the projection prg : A — B is given by
AX Ve = A (N o) — A

(c) In example each space A, = B x Vg is equipped with a natural A-action given by
(v+L,ve0) + A= (V+ A+ L,voo + A) for (v+ L,vs) € Br, x Vg and A € A. We define the (.Z,T')-
space T as T = A/A. More precisely for L € £ we let T1, := Ay /A = Vg/L and let pry : Ap, — Ty,
be the quotient map. Note that each is an n-dimensional real torus. It is clear that a morphism
¢: Ly — Ly in C(Z,T) induces a canonical map ¢ : Tr, — T, such that the diagram

pPrp,
BIXVR————)TLI

I I

pPrp
B Lo X R —2> TL2
commutes. Thus

(52) T=T%:C(%T) — Top, LTy, (p:L1— Lo)ws (¢:Tr, — Tr,)

is a (%, f)—space. It is in fact a (Z,T')-space, called the torus (Z,T')-space. Note that each
Ty, = Vg/L is an n-dimensional real torus. For T' we get

= (/AX X VR> JA.

The collection of maps pr; : Ay, — T, L € £ is a morphism of (£, T")-spaces pr : A — T. The
induced morphism A — T is the map

(53) pr:KXVRH(KXVR)/A, x x4+ A

It is easy to see that the lattice topology on T can also be defined as the quotient topology of the
lattice topology on A with respect to (| . More precisely a subset U C T 1s open if and only if
pr—1(U) is open in Aand a family of subsets {U, };cr of an open subset U C Tisa covering if and
only if {pr=(U;)}ies is a covering of pr=1(U).

Consider the composition of morphisms
(54) t:=pro{: B —T
It has the following concrete description. For L € £ we identify 77, with Vg/L. Then the map
tr, : AJL — Vg /L is induced by the inclusion A — V.

(d) Consider the case of Example (a) above, i.e. where V = F is a number field and . = Z° C
Lat(F) is the set of fractional ideals in F' that are coprime to a finite set of nonarchimedan places

Sof Fand I = 0% x Og = Aff(Og). For a € 7% we have
By, = Og/a, Ay = (BX Fy)a = 0g/a x Fy and T, = Fx/a
where F, (= F ® R. It will be useful to have adelic descriptions of B, A and T. Recall that
Af = vas vioo Fu (vesp. AS = Hggs F,) are the finite prime-to-S (resp. the prime-to-S) adeles of
F'. By the strong approximation theorem we have
(55) B, = Af/a® A, = A%/a% and T, = AY/(Og+a°)
where @ := (ITogs,vp00 Ov) @ C A?.
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Using we obtain
B = lim Og/a = lim Ad/a° = AS.
—acZs S/ —aeZs f/ f
Note that for a € Z° we have

AIS / ~S

= lim a/a’ = a”.
—a’'eZ5 a’'Ca
Thus a subset U C A? is open if and only if there exists a € Z° such that U is a union of a°-cosets.

For A and T we get

~

(56) A=A% and T = A%)0Oy

and pr: A — T (resp. prg : A — B) is the natural projection AS — AS/Og (resp. AS — A?) We

also remark that under the identifications , the map m : T — T, is given by the projection
Ta: AS/Og — AS /(05 +3%).

Note that the lattice topology on B , A and T are coarser than the usual topologies on A%, A and

A%/Og respectively. For example a subset U C A is open in the lattice topology if and only if it
is open in A with respect to the usual topology and if it is @°-stable for some a € 7.

(e) More generally we consider the framework of Example (b), i.e. we have n = dm, F/Q
is an extension of degree m, V is a d-dimensional F-vector space, M is a finitely generated Og-
submodule of V with M®p  F =V and . = £ (M) is the set of finitely generated Op-submodules

L of M satisfying L ®¢p, Og = M. In this case the associated (.Z, f)—spaces B, A and T (for
I' = Affp,(M)) admit the adelic descriptions

= Meog AY)/LS,  Ap = Moy A%)/LS  and T, = (M ®o,; AS)/(M + L)
for every L € . (where LS is the closure of L in A?, ie LS = (ITogs,pt00 Ov)L). Moreover we have
B=VerA], A=VepA® ad T = (VeprAd)/M.

Againpr: VepAS - (VopAS) /Mand prg : VeorA®S -V er AJSC are the natural projections.

Sheaves on (.2, f)-spaces. Let R be a ring and let X be a (.Z, f)—space. We denote the category
of R-sheaves on the site X = (X, Open(X),Cov) by Sh(X,R). The objects of Sh(X, R) will be
called a R-sheaves on X. The notion of an R-presheaf on X is defined similarly. By Prop. the
category Sh(X, R) is R-linear, abelian and has enough injectives. Also for L € £ there is a pair
of adjoint functors 7} : Sh(X, R) = Sh(X, R) and (71)« : Sh(X, R) — Sh(X[, R) associated to
the projection 7y, : X — X . We will denote the second by

(57) Sh(X,R) — Sh(Xy,R), F = FL.

Recall that for .# € Sh(X, R) the sheaf .7}, is given by .# (W) := .% ((n1)"'(W)) for every open
subset W C Xp,.. Note that for L, Ly € £ with L1 C Ly we have %1, = (7L, .1,)« L, -

More generally if I CTi is a subgroup then we define a I” -equivariant R-sheaf .7 on X to be a
- -equivariant R-sheaf on X (see Def. [A.8). The category of I -equivariant R-sheaves on X will be
denoted by Sh(X, I, R).

We note that a sheaves on X can be completely described in terms of collections of sheaves %y,
on Xy, for L € .Z together with the collections of isomorphisms %1, = (71, 1, )«%#1, for every pair
L1 C Ly in .Z. More precisely let Sh'(X, R) denote the category whose objects

‘9\, = {y£7;0L1,L2;L7L1¢L2 S gyLl C LZ}
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consists of a collection of sheaves .#; € Sh(Xr, R) for L € £ together with a collection of isomor-
phisms pr, 1, 1 Fr, = (T01,L,)+ JLI that satisfy the cocycle condition

(WLQ,L:«;)* (pL17L2) © PLy, L3 = PLy,L3

for every triple of lattices L1 C Ly C L3 in .. A morphism « : #' — ¢’ in Sh/(X, R) between two
objects F' = {F] }rcy and ¥’ = {¥] }c.4 consists of a collection of morphisms ay, : F] — ¥]
in Sh(Xp,R) for every L € .Z that are compatible with the isomorphisms pr, r, in the obvious
sense. We have the obvious

Lemma 3.5. The functor
Sh(X,R) — SW(X,R), F = {ZL}rcsas
s an equivalence of categories.
As a first application we obtain

Proposition 3.6. The functor is exact and preserves injectives. In fact a sequence of R-
sheaves F| — Fo — F3 on X is exact if and only if the sequence F1 1 — Fo 1, — F3 1 of
R-sheaves on Xy, is exact for every L € L.

Proof. This can be easily deduced from the exactness of the functor (mp, r,)« : Sh(X,,R) —
Sh(XpL,, R) for every pair of lattices L1 C Ly in .Z. O

Let f: X Y bea morphmm of (&, F) spaces. As mentioned before f induces a I'- equ1var1ant
contmuous morphism of sites f X — Y. We will denoted the functor f* and its left adjoint f*

(see (166) and (167))) by

fx : Sh(X,R) — Sh(Y,R) and fr:Sh(Y,R) — Sh(X, R).
Thus f, is given f,(F)(V) = .Z(f~1(V)) for every open subset V C Y.

Proposition 3.7. The functor f* : Sh(Y,R) — Sh(X,R) is exact. Moreover for 4 € Sh(Y,R)
and L € £ we have

(58) @) = (f)(“L).
Also for the right derived functors of f. we have
(59) (R'f(F) = (R'f)«(F1)

for every i >0 and F € Sh(X, R).

Proof. The first assertion and (| can be seen by interpreting the functor f, in terms of the
categories Sh/(X, R) and Sh/ (Y R) (compare Lemma [3.5). Namely, by the definitions we have
(f«(F))r = (fr)«(ZL) for every L € £ and ¥ € Sh(X,R). Thus the functor f, : Sh(X,R) —
Sh(Y, R) corresponds under the equivalences Sh(X, R) ~ Sh/(X, R), Sh(Y,R) ~ SK' (Y, R) to

(60) Je: Sh,(Xa R) - Sh/(Y’ R)a { L?:OL1,L2} = {(fL) ( ) (sz) (PL1,L2)}

Since the maps 7z, 1, are coverings we have (77, 1,)« © (fr,)* = (fr,)" © (7L,,1,)« for every pair
L1 C Ly in .Z. From this it follows easily that the functor

f* : Sh/(Y’ R) — Sh,(Xv R)v {gl/nplq,la} = {(fL)*(gi)v (sz)*(le,Lz)}

is well-defined, exact and left adjoint to (60J). 4 ' . ‘
For note that mpof = fromg hence (7r).0R" fx = R'(mrof). = R*(fromr). = R'(fr)+0(7L)«
by Prop. ]
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Example 3.8. Let pr : A — T be the natural morphism between the (%, f)—spaces defined in
Examples (b), (c), i.e. we have pr; : A, = A/L x VW — T, = (A/L x Vg) /A = Vg/L is the
natural projection for every L € . with A = J; & L. Since the lattice topology on T can also be

defined as the quotient topology of the lattice topology on A with respect to we see that the
functor
Sh(T,R) — Sh(A,A,R), F — pr*(.F)

is an equivalence of categories.

Definition 3.9. A (f,f)—space X will be called discrete if Xy, is a discrete topological space for
every L € Z.

In the case of a discrete (&, f)—space it is easy to characterize when an R-presheaf .% on X is a
sheaf.

Lemma 3.10. Let X be a discrete (.Z,f)—space and let F be an R-presheaf F on X.
(a) F is a sheaf if and only if the map

s—(slu,;)ier

Z(U) [ic: F(U3)

is an isomorphism for every L € £, every L-stable subset U C X and every covering U = |J;c; Us
of U by disjoint L-stable subsets.

(b) Assume that F is a sheaf and let Uy C Uy C X be open subsets. Then the restriction resy, u, :
F(Ug) — F(U1) has a canonical section

LUy, Uy y(Ul) — g‘\(UQ)
i.e. we have resy, v, oty U, = idz(1y)-

Proof. (b) Since X is discrete the complement Us \ Uy is again open and Us = Uy U (U \ Uy) is an
open covering. Hence

s> (sluyslug\vy)
- A

F(Us) F(U) & F Uz \ Ur)

is an isomorphism. ]

Stalks. Let X be a (&, f)—space and let .% be an R-sheaf on X. For a point x € X we introduce
two types of R-modules .%, and .#* which may be viewed both as certain kind of stalk of .% in x.
For L € £ put z, := mp(x). Firstly, we consider the case when X is discrete. Then for Ly, Ly € &
with L; C Lo the fibers 7T£11 (xr,) C 7T221 (xr,) are open subsets of X containing z. By part (b) of
the Lemma the restriction map

: 9(77221(9%2)) — 9(77[11(9%1))7 S 5’ “Nap)

(61) Dz L0y -= TE5 —1 T \TLy

7TL2 ((IILQ)”]Tle (:BLI)
has a canonical section
(62) taLy Lo+ F () (2r,y)) — F (g, (o).
The collection of R-modules {Z (7} '(x))} e together with the maps form a direct system
of R-modules over the ordered set .Z = (£, C) so we can consider the direct limit
Fp = lim F(r7 N xp)).
pim lim (g )
Similarly the collection of R-modules {Z (7 '(z1))}1cy together with the maps form an
inverse system over .Z°PP and we can define

F* = lim F(r; (x1)).



For an arbitrary (.2, f)—space X we define .%, and .7 by first pulling .# back to the associated

discrete (£, T')-space Xgisc (i-e. (Xgisc)r is the set X equipped with the discrete topology for every
L € .£). More precisely we define

Definition 3.11. Let .# be an R-sheaf on a (£, f)—space X. For a point x € X we define the
R-modules F, and F* by

(63) Fp = 1U(F)g and Fr=15(F)"

where v : Xgise — X is the identical map viewed as a morphism of (£, f)-spaces. We call F% the
upper and F, the lower stalk of % at x.

Example 3.12. Let B be a discrete (£, T)-space defined in Example (a) and let .%# be an
R-sheaf on B. We consider the upper stalk of .# at 0 € B = A. For that put 0z, := 7(0) = L €
A/L = By, sothat 7;'(01) = L for every L € .#. Note that we have B = |J, . o 77 ' (01). Moreover

for a fixed lattice Lo € .Z every element of the family U = {71';1(0 L)} ez 1oL, s Lo-stable hence

U is an open covering of B. Since {L €% |LDLy}°"P is a filtered partially ordered set the sheaf
property implies the last equality in

0 _ 1. —1 T a(~—1 _ g(D
7= 1<£nLefopp ﬂ(TrL () = 1<£n{LEfZ\LQLo}Opp(}(ﬂ-L (O2)) = F(B).

Remarks 3.13. (a) If #Z isa f—equivariant sheaf then the I-actions on .% and X induce canonical
homomorphisms

V: Ty — Forwyy 7T FT @,

for every v € [. In particular if z is a r fixed-point then %, and Z#7* are R[f]—modules. A similar
remark holds for I'-equivariant sheaves.

(b) One could also consider the stalk of .# € Sh(X, R) at z € X defined in the usual sense, namely

as the direct limit hi>n Z (U) where U, consists of all open subsets of X that contain z and
Uely
where the transition maps are the restrictions. The above two R-modules differ in general

from this "naive” stalk. For that assume that X is discrete so that the fibers {7, (z1)}rce form
a cofinal subset of U,. Thus we have lim F(U) = lim F (7 (xr)) where the transition

—Uely, — Le.gopp
maps are the maps (61]).

Lemma 3.14. Let X be a (Z,f)—space and let F be an R-sheaf on X. Let x € X and put
xy, =mr(z) for L € . Then we have

4 Z. — i z FT _ z )
(64) T LnLeg(fL)zL and 7 HLG,ZOPP (FL)ay,

Proof. Assume first that X is discrete. Then the R-module .F (7, (z1)) = ZL({z1}) is equal to
stalk of the sheaf % on X at the point xy for every L € & (since X is discrete). Therefore
holds in this case. If X is not discrete then by applying to the morphism ¢ : Xgjse = X
we obtain

T — KT — T *( g 1 *( g Y z
Ty = U(F )y = hi?/;gg(é (F)L)ey = h_r>nL6$(LL) (FL)zy, = hi{lLez(JL)xL

The proof of the second equality in is analogous. ]

An immediate consequence of Prop. and Lemma. [3.14] is
25



Proposition 3.15. Let f : X — Y be a morphism of (£, F) -spaces and let F € Sh(Y,R). We
have A
F(P)e = Frpy  and PN = FIO

for every x € X.

I-stable closed subspaces. We introduce the notion of a [-stable closed subspace of a (&, f)—
space. The main example we have in mind are a finite set of torsion points of the torus (£, T")-space.

Definition 3.16. Let X be a (&£, f)—space. A T-stable closed subspace of X is a pair (C,1) con-
sisting of a topological space C' equipped with a I'-action and a I'-equivariant morphism ¢ : C — X
of sites such that tf, ;=7 ov: C — X is a closed embedding for every L € £, i.e. we have

(i) up : C — X is injective and Cp, := 1,(C) is closed in X .
(ii) The induced map if, : C — C, is a homeomorphism.

Note that the fact that ¢ is [-equivariant implies that we have Y(CL) = Cyy) for every L € &
and 5 = (7,A) € I. Note also that condition (i) implies (ii) if C is finite. If X be a (Z,T)-space
and (C,¢) is a I'-stable closed subspace of X then the I'-action on X factors through T' (i.e. A-acts
trivially on C). In this case we call (C, () is a I'-stable closed subspace of X.

Examples 3.17. Let F' be a number field, S a finite set of nonarchimedean places of F' and AS
(resp. A? ) the prime-to-S (resp. finite prime-to-S) adeles of F'. We give examples of I'-stable closed

subspaces of the (.2, T)-spaces A and T considered in Examples (d) and (e).

(a) Let V = F and . = Z° be as in Examples (d). We fix a subgroup I' of O¢ and put I =
I'xOg C Aff(Og). Firstly, we describe certain I'-stable closed subspaces of the (., T")-space T'. For
that note that for a € Z the restriction of the projection 7 : T = AS /Og — AS /(Og+a5) = Fyo/a
to the subset F//Og C A%/Og is injective. Indeed, if we put S~'a := (S'OF) - a then we have
F=0g+8 taand OsnS~ta = ahence S™'a/a = F/Og. Under this identification the restriction
of my to F/Og is given by the inclusion S~'a/a < F/a < F,/a. Thus if C is a finite [-stable
subset of V/Og C T = AS/Og then the pair (C,¢), where ¢ = incl : C < V/Og — AS/Og is the
inclusion, is a I'-stable closed subspaces of T. For example if 2 is an ideal of Og and if we put
T[] := A~ /Og then the pair (T[2],¢) a O}-stable closed subspaces of T.

(b) Let F, S, V, M and £ be as in Examples 2.9 (b) and 3.4] (¢). Again it is easy to see that
the restriction of the projection 7z, : T = M ®og AS/M — Ty = (./\/l ®0g AS) /(M + Es) to the
subset V/M = M ®@p, F/M C M ®04 A%/M is injective. Hence if T is a subgroup of GLog4 (M)
and C C V/M a finite I'-stable subset then the pair (C,incl) is a I'-stable closed subspace of T'.
For example if N' O M is another finitely generated Og-submodule of V and if T is a subgroup of
GLp (V) leaving both M and A invariant then the pair (N /M, ) is a I-stable closed subspace of
T.

Sheaf Cohomology. Let X be a (., I')-space and let R be a ring. For .% € Sh(X,R) (res

F € Sh(X,] T, , R)) we will write H{(X,.F) (resp. H(X,T, .F)) for the cohomology groups H’(X )

(resp. H’(X [,.7)). Also if X is a (&, T)-space and if .Z € Sh(X,T,R) then the cohomology

groups H(X,T,.Z) will be denoted by H'(X,T,.7). We have

Proposition 3.18. For every L € £ and F € Sh(X, R) there exists a canonical isomorphism
HY(X,Z) = H(XL, 7L).

Proof. This follows immediately from Prop. and the fact that we have .Z(X) = .Z,(X.) for
every .# € Sh(X, R). O
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In particular we obtain

Corollary 3.19. Let X be a discrete (£, T)-space. We have

(a) H(X,F) =0 for every # € Sh(X,R) and i > 1.

(b) H(X,T,#) = H(T,H"(X, 7 )) for every F € Sh(X,T,R) and i > 0.

Proof. (a) Let L € £. By Prop. We have HY(X, #) = H' (X, #1) = 0 for every i > 1 since

X7, is discrete.
For (b) note that (a) implies that the spectral sequence (173)) degenerates. O

Assume now that there exists L € £ that is stabilized by the action of I' so that the topological
space X, becomes equipped with a [ = I x A-action and that .7, for .F € Sh(X, r R) becomes a
[-equivariant sheaf on X;. In this case we can compare the cohomology groups H*(X, T, 7 F) with
the equivariant cohomology groups H® (X, F, Z1) in the usual sense.

Corollary 3.20. Let X be a (.f,f)—space. Assume that L € £ is I'-stable, i.e. that we have
J(L) = L for every 7 € I'. Then there are canonical isomorphisms

(65) H*(X,T,.%) = H*(X.,T, %)
for every F € Sh(X,f,R). A similar statement holds for I'-equivariant cohomology if X is a
(&, T)-space and F is a I'-equivariant sheaf on X .

Remark 3.21. Let X be a (.Z,I')-space and assume that .# contains a maximal element Lo (so
that A = Lo and I' C GL(Lg)). Then Prop. and Cor. imply

H*(X,#) = H*(X1,, %L, and H*X,I'%)= H*(Xr,,T,%rL,)
for # € Sh(X,R) and .# € Sh(X,T, R) respectively.

Proof. We show that there exists a morphism of spectral sequences for f—equivariant cohomology
(see Prop. [A.11)

(66) (E = H'(T,H*(X, 7)) = E™+ = H™+(X,T, 3?)) —
(E;s = 0T, H* (X1, 71)) = E™° = H™+(X,,T, %)) .

By Prop. it is an isomorphism on the Es-page hence also on the limit terms.
To define we argue as in ([21], Prop. 3.42). Let 0 — .# — .#* be an injective resolution of

Z in Sh(X,T, R). By Prop. (b) the sequence 0 — F, — .} is still exact. Let 0 - % — 7°
be an injective resolution of .%, in the category Sh(Xy,I', R) and let o : .47 — _#* be a morphism

such that
0 — Fp —— 7

b s
0 —— F —— 77
commutes. Passing to global sections yields a homomorphism of complexes of R[I']-modules
I(X) = Fp(Xp) —— F*(Xyp)
that induces a morphism between f—hypercohomology spectral sequences
(Egs = BT, H¥(9*(X))) = E'+ = HT+S(f,f°(X))) —

(Bp = ' (F (7 (K1) = BT = 55 (F, g*(X0)) ).
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The first spectral sequence can be identified with the source (by Prop. (d)) and the second
with the target of . O

We can also define cohomology with support in a [-stable closed subspace (C,¢). As before for
Le Zweput i, =mpor:C — X and set C, :=¢1(C). For .# € Sh(X, R) we set

Hiy(X,7) = {s € Z(X) | 3L € L, 5|5 11, = O}

For Ly, Ly € & with L; C Ly we have X\7rL (Cr,) C X\7rL ,) hence

~

(CL
(67) HCL1 (Xp,, Z1,) = ker(res : Z(X) — (X \ 7, L))
C HY, (Xp,, Fr,) = ker(res : F(X) — F(X \ 7} (C1,)))-
It follows

T\ -1 _ 1 0
(68) H< >(X F) U ker(res : .7 (X ) — F(X\ 7, (Cp))) = h_n>1L€$HCL(XL,ﬂL).
Lez
where we view .Z again as a partially ordered set with respect to the inclusion. We also define

(69)  HUX\(C),F)i=lm F(X\m(C1) =lim  HXL\Cp F1)

where the transition maps in the direct limit are restriction maps. We note that if % is a I-
o p

equivariant R-sheaf then Hc, (X,.Z) and H°(X \ (C),.%) carry natural I'-actions, so we may
consider their fixmodules
(70) Hi (X, T, 7) = Hi, (X,.2)",  H(X\(C),I,.Z):= H'(X\(C), 7).

Definition 3.22. (a) The i-th right derived functor of the functor H?C> (X, +) will be denote by

Hioy (X, -) : Sh(X,R) — Modg, F = Hi\(X,7)
and the i-th right derived functor of H°(X \ (C), -) by
HY(X\ (C), ) :Sh(X,R) — Modg, Z— H'(X\ (C),.%).
(b) The derived functors of the two functors will be denoted by
H{o (X,T, ) : Sh(X,T,R) — Modg, .F — H|e,(X,T, %) and
HY (X \(C),T,-): Sh(X,T,R) — Modg, Fw~ H'(X\(C),T,7)
respectively.
Proposition 3.23. Let X be a (Z, f)—space and let (C,1) be a [-stable closed subspace of X.
(a) We have
Hip(X,.7) = @Leg H¢, (X1, 71)
HY(X\(C),Z) = li H{(X;\CL, Z
(X\(©).7) = lm _ H(X,\Cp i)

for every i € Z>¢ and .F € Sh(X,R). Moreover zf Fisa f—equivam'ant sheaf then the R-modules
HZ@ (X, .F) and HY(X \ (C),.F) carry a natural T -action.

(b) There exists a long exact sequence
(71) o Hig (X, .F) — H(X, F) — H(X\ (C),F) — H (X, 7) —

(©)
for every # € Sh(X,R).
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Proof. (a) follows immediately from (68)), (69), Prop. [3.6] (b), (c) and the exactness of the direct
limit. (b) Follows from (a) by passing in the long exact sequence

R Hé*L(XLayL) — Hi(XL,yL) — Hi(XL \ CL,fL) — ngl(XL7fL) —_— ...
to the direct limit over L € .Z. O
Remark 3.24. Note that Prop. [3.23] implies that there are canonical homomorphisms
(72) HE, (X1, 1) — Hio) (X, ), H'(Xp\ Cr, 71) — H(X\(C),7)
for every L € £, % € Sh(X,R) and ¢ > 0. If L is I-stable lattice and .7 is a f—equivariant sheaf
then it is easy to see that the maps are I'-equivariant.

Corollary 3.25. Let X be a (.i”,f)—space and let (C, 1) be a [-stable closed and discrete subspace
of X.
(a) Let F € Sh(X, R) and assume that the following conditions hold

(i) X1, is an oriented n-dimensional manifold for every L € L.
(i1) The covering 71, 1, : X1, C X1, preserves the orientations for every pair Ly C Ly in L.
(i1i) F1, is a locally constant sheaf.

Then we have

73 Hiy(x.7) = { B e HEm

(b) Let F € Sh(X,T,R). Assume that (i), (iii) and

(ii’) The covering ¢ : X, — X, preserves orientations for every morphism ¢ : Li — Ly in
c(#,T)

holds. Then s a f—equz’vam’ant isomorphism.
Proof. By ([13], 3.2.3) we have

i . i P lim (ﬂ[lﬂcL ifi:n,
Hi (X, #) = lim He, (X1, 71) = —>Le$0

—Le¥ if i # n.
- @cecyc if’L:TL,
- 0 if i # n.

0

In the examples we are interested in (namely the examples and (52)) the strong condition (ii’)
usually does not hold. Instead of (ii’) we assume that there exists a homomorphism € : I' — {41}
that indicates whether the covering ¢ : X5, — X, preserves the orientation or not.

Corollary 3.26. Let X be a (Z, f)—space, let (C,1) be a f—sNtable closed and discrete subspace of
X and let e : T' — {1} be a homomorphism. Let .# € Sh(X,I', R) and assume that the conditions
(i), (iii) of Cor. as well as

(ia”) The covering p : X1, — X,(1,) preserves (resp. reverses) orientations for every morphism
o= L1, L2), = (71,A) in C(Z,T) with e() =1 (resp. e(y) = 1)

holds. Then there exists an isomorphism of f—modules
Hi (X, 7 (e) = P Fe.
ceC

8See Remark for the definition of .Z (¢).
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We briefly address functorial properties for some of the cohomology groups introduced in this
section. Let f: X — Y be a morphism of (.Z,T")-spaces. By (176]) and (177) there exists natural
morphisms of d-functors

(74) H'(Y,7) — H'(X, f*(7)) 0, 7 € Sh(Y, R),
(75) HY(Y,T,Z) — H'(X,T, f*(y)) i >0,.% € Sh(Y,T,R).
Now assume that (C,:) is a I-stable closed subspace of Y disjoint from the image of f, i.c. we

assume that C7, is disjoint of f,(Xp) for every L € & H It follows immediately from the definitions
that the functor for ¢ = 0 factors canonically in the form

HY(Y,#) — H(Y \ (C),.Z) — HX, f*(F)).
The second homomorphism extends to a morphism of §-functors
H' (Y \(C),Z) — H'(X,f*(#)) i>0,7 cSh(Y,R)
so that the composition HYY,#) — HY(Y \ (C),#) — H'X, f*(#)) is the morphism (74).
Similarly, for I'-equivariant sheaves there exists a natural morphism of J-functors
(76) H' (Y \ (C),I,.%) — H'(X,T, f*(#)) i>0,.%eShY,T,R)
so that factors in the form Hi(Y,T',.%) — H'(Y \ (C),T,.%) — H{(X,T, f*(F7)).

4. ADELIC EISENSTEIN CLASSES

The sheaf of locally polynomial distributions. In this section we let V' be an oriented Q-
vector space of dimension n, let .Z be a non-empty subset of Laty such that holds and put

A =A(Z) = Upcyg L. Moreover we fix a subgroup I' of GLg (V') such that .Z is I-stable and put
I':'=Tx A C Affp(V). In the followmg we denote by B, A and T the (%, F) -spaces of examples
(a), (b), (c). Recall that we have B = A := th gA/L (see (50)) and that a subset U C B is

open if and only if there exists L € % such that U is L-stable.
For a fixed ring R we define an R-presheaf Dy, = Dipo,p o0 B by

Dlpol(U) = Dg—lpol(U NA, R) = HOIn(IIlt_g,10C7b(U NA, Z), R)
for U C A open. For a pair of open subsets Uy C Us C A the restriction is the map
Dlpol(UQ) — Dipol(U1), w1+ ployna

(compare ) By Lemmas and (3 Dlpol is a sheaf. Moreover it carries a canonical T-action
given by the maps (33]).

Recall that A = B x Vg and that T'= A/A and that there are canonical morphisms pr: A — T
and prg : A — B. The pull-back of Dy, g under prg : A — B will be denoted by Di,01 = Dipol,4
as well. By Example there exists a natural I'-equivariant R-sheaf ¥ = %, on T' such that

pr(Z2) = Dipo,a = (prg)*(Dipol,B)-

Concretely, the section of & over an open subset U C T = (7\ X VR> /A are the A-invariant elements
of Dipora(pr—1(U)).

Definition 4.1. The sheaves Dipol, B, Dipol,a and Zipe1 will be called the sheaf of locally polynomial
R-valued distributions on B, A and T respectively.

9Note that this condition is equivalent to requiring that f(X) and +(C) are disjoint
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We are going to describe the sheaf 27, on T, = Vg /L for L € Z. Let
jiVe —T= (vaR)/A, v (0,0) + A.
The composition 77, o j is the universal covering of 77, namely it is the map
qr. : Vo — Vr/L, v~ v+ L.

Since the group of deck transformations of the covering ¢, is the group L, any R[L]-module M
defines a local system M on T7. Recall that its sections over an open subset U C T7, are given by

(77) MU) = {f € Clg;" (U), M) | fA+v) = A- f(v) VA€ L,v € Vi}.
Lemma 4.2. We have 95, = Dlpzl_(\IT,R), i.e. 9, is the sheaf associated to the R[L]-module
Dlpol(L7 R) = HOm(InthC(L, Z), R) on T7y,.

Proof. Firstly, note that (Diyo1,4)r € Sh(ArL, R) is the pull-back of the sheaf (Do p)r, on the
discrete space B, = A/L under the projection pry : A, = A/L x Vg — A/L. Define ¢ : Vg —
Arp = A/L x Vg,v — (0,v) so that pr; oo = q7. Both maps pr; : Ay — T and qr : Vg — 11
are Galois coverings with group of deck transformation A and L respectively. Hence the functors
(prz)* : Sh(TL,R) — Sh(AL,A,R) and (qr)* : Sh(TL,R) — Sh(Vg, L, R) are equivalences of
categories. Since the pull-back of 7, under pry : Ay — Tp, is the A-equivariant sheaf (Djpo1 4)z on
Ap, we see that the pull-back of 7, under g, : Vg — T}, is the L-equivariant sheaf t*(Dipora)r =
(pry ot)*((Pipol,B)1.). Note that pry oc is the constant map Vg — A/L,v — 0. Hence (q1.)*(Z1) =
t*(Dipol,a) 1 is the constant L-equivariant sheaf on Vi associated to the L-module (D01 5)1({0}) =
Dipol(L, R). 0

Next we determine the stalks of Dipo1 B, Dipol,a and Zipe1-
Lemma 4.3. (a) There ezists canonical isomorphisms
Bb : (Dlpol7B)b — Dlpol,b(A¢ R) and 61) : (Dlp017B)b — Dlpol(A> R)

for every b € B. Moreover the diagram

b
(Dlpol,B)b i) Dlpol,b(A¢R) (Dlpol,B)b IB—> Dlpol(AaR)
(78) |5 |5 |5 |5
B5(v) = gt ®)
(Dpor,B)3-1) — Dipolp(A, R) (Dipor,B)” — Dipal(A, R)

commutes for every v € T and b€ B.
(b) Similarly there exists canonical isomorphisms
ﬁa : (Dlpol,A)a — Dlpol,b(A7 R) and ﬁa : (Dlpol,A)a — Dlpol(Aa R)

for every a € A. Also the diagram analogous to for Dipo1, 4 commutes for every a € A and
vel.

(¢) There exists a canonical isomorphisms

(79) Bt : -@t — Dlpol,b(pr_l(t)7 R) and /Bt : -@t — Dlpol(pr_l(t)7R)
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for every t € T. Moreover the diagram

Bt B

2y ———  Dpappr (t),R) 2 ——  Dpalpr(t),R)
b b b b
57*1 t — 'Yil(t)
97*1(15) —()> Dlpol,b(pr_l(y(t))a R) 77 ') 6—> Dlpol(pr_l(’y_l(t))v R)

commutes for every v € I' and t € T. In particular if t € Tisal fized-point then the maps (79))
are isomorphisms of R[T']-modules.

Proof. (a) Let b € B = A and put by, := 71,(b) € A/L for L € £. Since A= ULegf we have b € L
for L € £ sufficiently large. It follows

~

. 1 . .
(Dipol,B)b = higlLeg Dipol, (7 (b)) = h_I>nL€$7b€Z Dipol, (L) = h_r>nL€$ Dipol(L) = Diporp(A, R)

and similarly (Dipol, B)’ = Dipol(A, R). (b) follows immediately from (a) and Prop. |3.15

For (c) note that for the stalk &, for t € T can be identified with the A-invariant elements of
[Taepe—1(t)(Pipor,a)a- Thus according to (b), the R-module %, can (and will) be identified with the
set of maps g : pr1(t) = Dipop(A, R),a — p, that satisfy paia = (7-2)«(pa) for every A € A and
a € pr Y(t). For such u choose a € pr1(t) and define /i :== (¥q)«(tta) € Diporp(pr~1(¢), R) where
1, is the A-equivariant bijection 1, : A — pr=1(¢), A = X\ + a. We show that [z is independent of
the choice of a. For that let a’ € pr=!(¢) and let A\ € A with @’ = A\ + a. Then we have

(Ya)x(1a) = (rsa)«(Bata) = (Yata)s © (T=2)+) (tta) = (Pa)+(1a)-

It is easy to see that the map pu +— g is the desired isomorphism ;. The existence of second
isomorphism 3! is proved similarly. O

Remark 4.4. For L € £ the stalks of the sheaf &}, on T}, admit a description similar to that for
2 in Lemma (c). Namely, there exists a canonical isomorphism

(80) (Z1)2 — Dipailqy ' (z), R)

for every x € Tr. Indeed, by Lemma and the stalk (Z1), can be identified with the set of
maps /i : g7 (2) = Dipol(L, R), h + pp, that satisfy pyip, = A -y, for every h € pr;*(t) and A € L.
Given such p we define its image under as the unique i € Dipol(g; *(t), R) that satisfies

[, s = [ 7o 10deh) 0.
qr, (®) L

for every f € Intioc(qy *(t),Z) and B’ € ¢;*(t).

Next we are going to determine the cohomology of T" with coefficients in the twisted sheaf Z(¢)
(see Remark [A.10). Here e denotes the sign character of Aff(V) introduced in (3F)), i.e. we have
€((y,v)) = sign(det(y)) for every (v,v) € Aff(V) = GL(V) x V. Firstly, note that according to
Cor. B.19 we have

i i Dipot(A, R) if i =0,
(81) H'(A, Dipor,a) = H'(B, DipolB) = { ’ 18 ) if i > 1.

The second equality follows from Cor. [3.19] The first equality can be seen using the Leray spectral
sequence associated to the morphism prp : A — B. For that note that according to Prop.
3.7 we have (prg)«Dipor.a = Dipo.p and R'(prg)«Dipora = 0 for i > 1 since the fibers of prp g -
Ar =~ R"™ x By, — Bp, are contractible for every L € Z.
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Proposition 4.5. (a) For i > 0 we have

(82) H(T, 9(c)) = { i ZZJ}’;Z

and H(T,T, 2(¢)) = Extlg[ﬁ(R, R).
(b) Let (C,1) be a finite I'-stable closed subspace of T. Then,

. —1 T
(83) Hig) (T, 9(e)) = { Doty (OB =
and
; -1 T s
(54 Hig(T.1, (0 = { Pomalor NOLRI i

(c) Under the assumptions of (b) we have

(85) HY(T\ (C),2(e)) = { ker (aug : Dlpol,b<gr*1<c>, R) = R) J} z; " 11,
and
(86) HY T\ (C),T,%2(e)) = { ker (aug : Dlpol,b(%"*l(C),R)F — R) Ziﬁ ; Z - }f

On the right side of - we have identified C' with ¢«(C) C T so that pr1(C) is a A-subset
of A. The map aug : Dipo1s(pr~(C), R) — R is given by evaluating u € Dipo1(pr—1(C), R) at the
constant function = 1 on pr—1(C).

Proof. (a) Consider the spectral sequence ((173]) for the A-equivariant cohomology of A with coeffi-
cients in Dipep 4(€)

BN = EXtrR[A}(R, HS(A, Dlpol(ﬁ))) — F"TS = HTJFS(A, A, Dlpol(e)).

By the spectral sequence degenerates, i.e. we have FX = E° for every i > 0. Moreover the
fact that the functor (3.8) is an equivalence of categories implies H*(T,2) = H*(A, A, Dipol,A)-
Together with Prop. we conclude
i i 0 i R ifi=mn,
H <T7 @(6)) = EXtR[A] (R7 H (A7 DlPOI(e))) = EXtR[A](R7 DIPOI(Av R) (6)) - 0 ifi+#n.
The last assertion follows from by applying the spectral sequence (173 to X = T and F = 9.
(b) The first assertion follows from Cor. and Lemma (c) and the second from the first
and Lemma [A. 12
(c) The equality follows from from (a) and (b) using the long exact sequences and
]

follows from and Lemma

LetteT beal fixed-point and put ¢z, := 7w (t) € Ty, for every L € £. We define a morphism
of (Z,T')-spaces
1y =t+1:B—T
where ¢ : B — T was defined in . More precisely we define ¢ 1, : By, = T, by . 1,(b) = ¢1,(b) +tL,
for every L € £ and b € By,. For the I-equivariant cohomology of B with coefficients in ¢} (Z(e))

we obtain
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Proposition 4.6. For i > 0 we have
(87 H(B.(91) = { P O T2
and ‘ ‘

H'(B,T,:{(Z(¢))) = H'(T, Dipr(pr~ (1), R)(e))-

Proof. By Cor. (a) we have H'(B,1;(Z(€))) = 0 if i > 1. Moreover by Example Prop.
and Lemma (c) we have

HY(B,i;(2(e)) = (1(2(e)))" = 2'(€) = Dipar(pr™ (1), R)(e).
This proves (87). The second assertion follows from the first and Cor. (b). O

Adelic Eisenstein Classes. In this section we continue with the set-up of the last section but
for specific V and .. Namely we choose the set-up of Example (b), i.e. F' denotes a number
field of degree d over Q, S a finite set of nonarchimedean places of F, V and F-vector space of
dimension m (so that n = dm), M a finitely generated Og-submodule of V' with M ®p4 F' =V
and .Z the set of finitely generated Op-submodules L C M satisfying L ®0, Og = M (note then
that we have A(.Z) = M). Moreover we fix a subgroup I' of GLo4(M). Note that .Z is I'-stable
and that it satisfies (22). According to Example [3.4] (e) we have T = (V@pAS)/M. As in the last
section let R be a ring and let 2 = %, be the associated sheaf of locally polynomial R-valued
distributions on 7. R

LetveVandput t =v+ M € V/M CV ®@p A°/M = T. Recall that by Lemma (c) there

exists canonical isomorphisms
Bt : Dy — Dipolp(v + M, R) and gt gt — Dipol(v + M, R).

According to Cor. if the order of ¢ in V/M is invertible in R then the targets of these maps can
be identified with Dipe1 (M, R) and Dipe1(M, R) respectively, i.e. in this case there exists canonical
isomorphisms

(88) Bi: Dy — Dipoip(M, R) and B 2" — Dipot(M, R).

Let C' C V/ M be a finite I'-stable subset. By Example (b) the pair (C,¢) is a closed subspaces
of T (where ¢+ = incl : C — V/M < T is the inclusion). Thus by and Prop. (c) we obtain

Proposition 4.7. Let C be a finite I'-stable subset of V/M and assume that the order of every
element in C' is invertible in R. Then,

; ker (aug : Mapsp(C, Dipo1p(M, R)) = R) ifi=n—1
(2 _ 9 pol, bl 1
T\ (.0 9() - | k gy
Here the homomorphism aug is given by mapping p € Mapsy(C, Dipol (M, R)) to the sum (over
¢ € C) of the evaluation of u(c) at the constant function =1 on M.

Let vg € V and assume that t = vy + M € V/M C Tisal fixed-point. According to Prop. |4.6
for the I'-equivariant cohomology of B with coefficients in ¢j (Z(¢)) we get

(89) H'(B,T,1;(2(€))) = H'(T, Dipor(vo + M, R)(€))
for every ¢ > 0. If the order of ¢ is invertible in R then this simplifies to
H'(B,T,¢;(2(e)) = H'(T, Dipol(M, R)(e)).

With this preparation we are able to define our adelic Eisenstein classes. The construction is
modelled after that of the Eisenstein classes of Beilinson, Kings and Levin ([I], Def. 3.32). We fix
a finite I'-stable non-empty subset C' C V/M. In the following we assume that the order of every
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element of C' is invertible in RH Let t € V/M be a I fixed-point that does not lie in C. We need
the following simple

Lemma 4.8. The image of v; is disjoint from C, i.e. the image of v, 1, : By, — T}, is disjoint from
7 (C) for every L € L.

Proof. Tt suffices to see that the image of 7 : B—Tis disjoint from C'. For that we write elements
of V. @p AS as pairs (z,y) with z € V ®p A? and y € V ®p Fy, = Vk. Concretely, 7; is the map
V @F A? - VopA¥/M,z — (z +v,0) mod M. Assume that ¢ € C, ¢ = w + M € V/M
lies in the image of 7;. Thus there exists z € V ®p AJ*? with (z + v,v) = (w,w) mod M, i.e.

(x +v,v) = (w,w) + (m,m) for some m € M. It follows x = 0 and v —w = m € M hence t = ¢, a
contradiction. ]

Remark 4.9. The image of ¢4 1, : M/L C Vg /L can be characterized as follows. It consists of those
elements tg € V/L C Vg /L that are mapped to ¢ under the canonical projection V/L — V/ M.

By the morphism ¢; induces a homomorphisms
HI(T\ (C),T, 2(e)) — H(B,T,i(2(e))
for every ¢ > 0. Together with Prop. and we obtain for 4 = n — 1 the homomorphism
(90) ker (aug : Mapsp(C, Diporp(M, R)) = R) — H" XL, Dipor(v + M, R)(e)).
By viewing R C R[M] as submodules of Dy (M, R) we obtain
R[C] = Maps(C, R) € Maps(C, R[M]) € Mapsr(C, Dipo1(M, R))
hence (R[C]Y)Y C ker(aug : Mapsp(C, Dipolp(M, R)) — R) where R[C]? := ker(deg : R[C] — R).
Definition 4.10. Let

(91) Eis(t) : (R[C])" — H" YT, Dipo1(v + M, R)(€)) a > Eis,(t)
be the restriction of the map to the subgroup (R[C]°)'. The element
(92) Eisa(t) € H* XTI, Dipol(v + M, R)(¢))

will be called adelic Eisenstein class associated to t and .

Remark 4.11. If the order of ¢ is invertible in R as well then the coefficients of the cohomology
group in can be identified with Djpe1(M, R), i.e. in this case we have

Eisa(t) € H" YT, Dipo1(M, R)(e€)).

We want to relate our adelic Eisenstein classes to the classes ([1], Def. 3.32) of Beilinson,
Kings and Levin. For L € .Z put t;, = wp(t) € Tr. Let tg € Ty, be contained in the image of
the morphism ¢, : B — T, i.e. we assume that ¢y is of the form ¢y =t +t, € V/L C Ty, for
some t; = m+ L € M/L so that t) = vp + L with vy := v+ m € V. Let I'y be a subgroup
of I' that stabilises L and to, i.e. we have y(L) = L and v(tp) = to for every v € I'g. Since
;' (to)) =vo+ L Cvo+ M =v+M CV we can consider the Ig-equivariant restriction (see (28))

(93) Dlpol(v + M, R) — Dlpol(’l)() + L, R), n— M‘vo-i-L'

Recall that the logarithm sheaf Zog; on 77, introduced in ([I], §3.4) is defined as the local
system associated to the R[L]-algebra R[L] = Dye1(L, R). The I'p-action on L provides Zog; with
the structure of a I'p-equivariant sheaf. The stalks of Zog; admit a similar description as those of

10Note that by Remark this holds if the residue characteristic of every prime in S is invertible in R.
35



71, (see Remark, namely for x € T, we have Zog;, . = Dyl 1, (¢;'(z), R). Since t is stabilised
by I'p and disjoint from C' there exists a canonical map (see [1], Def. 3.32)
(94) Bisg (to) : (R[C]")" — H""!(Ty, (L0g,)uo(€) = H" ' (To, Dpol(vo + L, R)(e)),

a — Eisg, o (o).

Its definition is similar to that of the map above. We are going to review the main steps of
the construction in the beginning of the proof of the Prop. below.

Remark 4.12. If the order of ¢y is invertible in R then there exists a canonical isomorphism of
I'g-modules Dyoi(vo + L, R) = (L0gr )ty = Dpoi(L, R) = R[L] (see [1], 3.24) so that Eisy o (to) €
H" YT, R[L](¢)) in this case.

Composing with the canonical map Dipo1(vo+L, R) = Dpoi(vo+L, R) yields a I'p-equivariant
homomorphism Dy,e(v+M, R) — Dpoi(vo+L, R). Together with the inclusion I'g < I' it induces
a homomorphism

(95) H" YT, Dipoi(v + M, R)(e)) — H" (T, Dpor(vo + L, R)(¢)).

Proposition 4.13. For every o € (R[C]°)' the image of the adelic Eisenstein class Eis,(t) under
the homomorphism is the Eisenstein class Eisy, o(to) of Beilinson, Kings and Levin.

Proof. Let
(96) H*(Tp\ Cp,To, Zogr(e)) — H*({to}, Lo, 1, (L0gy(€))) = H*(To, (Logp)s(€))

be the canonical homomorphism of equivariant cohomology groups induced by the ['g-equivariant
embedding v, : {to} — 17 \ Cr. Using similar arguments as in the proof of above one shows
that

(97)  H" YT\ Cy, Ty, Logp(€) = H" (T \ Cp, Logp(e)" = ker((P Log,)™ — R).
ceCy,

Since all points in Cf, are torsion points of T, whose orders are invertible in R there are canonical

isomorphisms of I'g-modules P .o, Log. = Maps(C, Dpol(L, R)) (see [1], 3.24). Therefore the

source of the map in degree n—1 can be identified with ker (aug : Mapsp, (C, Dpoi(L, R)) = R).

The map is the restriction of (in degree n — 1) to the subgroup (R[C]%) .

Note that in the construction of we could have replaced the sheaf Zog; with Z; and the
coefficients Dy (vo + L, R)(€) in the target of with Dipo1(vo+ L, R)(€). Indeed, it follows again
from Prop. (c) (applied to T = T<©); compare Remark that ([1], Prop. 3.24 and Cor.
3.28) hold as well if we replace Zog; with the sheaf Z;.

Consider the diagram

ker (aug : Mapsy, (C, Dpor(L, R)) — R) H"\(T, \ O, To, Zogp(€) ——s H"1(By,To,ii , Zogy(e))

d d d

ker (aug : Mapsp,, (C, Dipor (L, R)) — R)

| J o]

H"=1(T\ (C), T, 2(¢)) —_— H"=Y(B,To,t;2(c))

H" YT\ Or,To,Z1(e)) ——— H" Y(Br,To,f 71(c))

1R

ker (aUg : Mapsl"o (Cv Dlpol,b(M7 R)) - R)

o] o] il

H"= YT\ (C),T, 2(e)) —= H" Y(B,T,2(e))
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Here the maps 2, 3 and 4 are all induced by the canonical map Dipei(L, R) — Dpoi(L, R) respectively
the associated morphism of sheaves ¥ — Zog;. The isomorphism 5 is defined similarly to
(97) and the maps 1 and 6 similarly to (76)). 7 is induced by the canonical map Diye1(L, R) —
Dipolp(M, R), it — pu (see (29)). The map 8 is defined by first identifying source and target with
H" YTy, \ Cp, Z1(€))'° and H" (T \ (C), Z(e))'0 respectively. It is then obtained by passing
in the second map of to I'p-invariants. The map 9 is the isomorphism of Cor. (for
X =B and .# = Z). 10 and 11 are the obvious maps.

Let ¢ € Hnil(BL,Fo,L;L.@L(ﬁ)) denote the image of a € (R[C]®)' C (R[C]°)' under the
composition of 5 and 6. By we can identify the group in the lower right corner of the diagram
with H" YT, Dipo1(v + M, R)(€)). Hence a is mapped under the composition of the lower two
horizontal maps to Eis,(t). Therefore the commutativity of the diagram shows that Eis,(t) is
mapped to ¢ under the composition of 11 with the inverse of 9. On the other hand by the definition
of the image of ¢ under the composition of 4 with the map

H""Y(Br,To, ;. Logp(€) — H" '({t:1},To, " (15, Logp)(€) = H" (Lo, (Logp)e, ()

induced by the inclusion ¢ : {t;} — By is easily seen to be equal to Eis,(tp). The proves the
assertion. ]

5. EISENSTEIN CLASSES AND SPECIAL VALUES OF PARTIAL ZETA FUNCTIONS

The aim of this section is to relate the adelic Eisenstein classes defined in the previous section to
special values of partial zeta functions and to Stickelberger elements. Throughout this section F
denotes a totally real number field of degree n > 2 over Q. We choose an ordering &1,...,&, : FF = R
of the set of field embeddings Hom(F,R). Note that this choice provides F, = F ® R with an
orientation. We recall the notion of a partial zeta function associated to a ray class of F'. For that
we fix an ideal m C Op, m # (0). For a ray class 20 € Z™/P™ the partial zeta function ¢(m,2l, s) is
defined as

((m2A,s) = > N
ae,aCOp
for R(s) > 1. It admits an analytic continuation to the whole complex plane except for a single
simple pole at s = 1.

Recall that there are also partial zeta function (g(o,s) associated to an elements o of the
Galois group G of an abelian extension of K/F. It is given by (s(o,s) = Z(a’S):Laa:U N(a)~*
if Re(s) > 1. Here S is a finite set of nonarchimedean places of F' containing all places that
are ramified in K and the sum is taken over all ideals a C Op that are relatively prime to the
elements in S and such that their image 04, € G under the Artin map is equal to o. If m is the
nonarchimedean part of a cycle of declaration of K/F (cf. [15], p. 103) so that K C F™ and if S
consists of all prime divisors of m then we have

(98) CS(U7 8) = ZC(m> A, S)
A

Here the sum is taken over the finite number of ray classes 2 € Z™/P™ that are mapped to o under
the Artin map.

Recall as well the T-smoothed Stickelberger element ©g 7 (K/F,s) defined in in the intro-
duction (where 7" is an additional finite set of nonarchimedean places of F' disjoint from S). We
will consider in this section only the case when T' consist of a single place q where we simply write
Os,q(K/F,s) instead of O g 1q1(K/F,s). Note that we have

(99) Os5q(K/F,5) = Y (¢s(o,s) = N(@)' "*Cs(ooy ")) [0,
oceG
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The Eisenstein class Eisp . We fix two non-trivial coprime ideals b,¢ C O with 2 € ¢. Let X
be the set prime factor of b - ¢ and put

=05, ={7€05|y=1 mod cOx}.

We consider the Eisenstein classes defined in the previous section in the case V = F, M = ¢Oyx
and I'. Thus we have .Z = ¢-Z* (i.e. .Z is the set of fractional ideal of the form ¢-a with a coprime

to ©) and T = A¥/cOy,. Put
C=T[pb]:=b"1Oxg/cOs and t:=1+cOx € F/cOs.
Note that C' is a finite I'-stable subset of F'/¢Os; and and that t € F//cOsx; is a T" fixed-point with
t ¢ T[b]. We choose a coefficient ring R C C such that N(b) is invertible in R. In this set-up the
map (91)) will be denoted by
Eis, = Eisc(t) : (R[T[6]]°)" — H" (T, Dipor(1 + ¢Os;, R)(€)), a+ Eisy.

Here € : F* — {#£1} is the character given by e(x) = sign(Np/g(z)) for z € F*. We consider the
following special choice for « (following [I])

and define
(100) Eish,c = IEiSa[b],c € anl(r’ Dlpol(l + Oy, R) (6))

In order to establish the relation of the class to partial zeta values in Theorem below we
will rephrase Prop. in a special cases. Namely, if m,a C Op are coprime ideals that are also
relatively prime to ¥ then we apply to the element tg := 1 + cma™! of Tipe1 = Fioo/cma™?
(it lies in the image of ¢y ¢g-1 by Remark . We note that E; is the subgroup of I' = Oy, . that

stabilizes the lattice ema™! C Oy, and that Ey, is the stabilizer of tg € T.p—1 in E.. We denote the
class for L := cma™!, the group 'y = Epc+ and a = a[b] by
EiSng-1,6(t0) € H" ' (Bem 4+, Dpol (1 + cma™", R)).
Consider the pair of essentially dual maps
(101) j:Int(1+ ema™, Z) — Intioep(1 4 O, Z), s fi
(102) 77 i D1+ ¢Ox, R) = Dpoi(1 + ema™ | R), A= 7 F—
Together with the inclusion Ey, + < I' they induce homomorphisms
(103) cor := corl, , ojs : Hn-1(Eem +,Int(1 +cma™",Z)) = Hp 1T, Intioes(1 + cOsx, Z)(e)),
(104) res := (jV)x oresy, . H" YT, Dipoi(1 + ¢Ox, R)(€)) = H" (Eem 4, Dpor(1 + cma™ !, R)).

Eem,+ -

By Prop. we have
(105) res(Eisp) = Eiscmg-15(t0)-

Homology classes associated to ray classes. Let A be another ring (later A =Z or A = Z|G]
is the group ring of an abelian Galois group). The pairing induces a cap-product pairing

N H YT, Dipol(1 + ¢Os, R)(€)) x Hp—1(T, Intioep(1 + ¢Ox;, A)(€)) — A® R.

Our aim is to show that the cap-product of the Eisenstein class with certain homology classes
associated canonically to ray classes yields the values of partial zeta functions at non-positive
integers. To define these homology classes we follow mostly ([7], §3 and §5.3).
Firstly, we present a general set-up to produce non-trivial homology classes in degree n — 1. To
fix ideas, let i/ C U* be a closed subgroup containing U, and let M an abelian group. We consider
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the (A¥)*-module C((A¥)*/U, M) of locally constant maps ¢ : (A*¥)*/U — M and its submodule
C.((A¥)*/U, M) consisting of those ¢ that have compact support. The (A*)*-action is defined by
(zp)(ald) := @(x~tald) for z € (A*)*, ald € (A*)*/U and p € C((A*)*/U, M).

Now assume that M is a I'-module. We equip C((A¥)*/U, M) with a I'-action defined by
(yo)(ah) = v - p(y~tald) for v € T, p € C((A®)*/U, M) and ad € (A®)*/U. If Uy C Uy
are closed subgroups of U* containing U, and if pr : (A*)*/U; — (A¥)* /Uy denotes the pro-
jection then we can (and will) identify C((A*)* /Uy, M) with its image under the monomorphism
C((A®)* /Uy, M) — C((A®)* /Uy, M), p — @opr. With this convention we have C.((A>)* /Uy, M) =
CL((A%)* /Uy, M) 0 C((A)* Jthy, M),

Suppose that U, Us,Us C U are closed subgroups containing Us, with Us C U; NUs. Consider
the I'-equivariant pairing

(106)  C((A®)" /Uy, M) x C((A®)" /U, Z) — C((A®)"[Us, M), (p.9) = 9 O ¢

defined by (o ®)(aldz) = ¥ (aldy) - p(aldy) for every a € (A*)*. Note that if ) has compact support
then ¢ © ¢ has compact support as well, i.e. restricts to a pairing

(107) C((A®)* /U, M) x Co((A%)* [Up, Z) — Ce((A%)* Us, M).

The latter induces a cap-product pairing

(108) N H'(D, C((A%)" /Uy, M) x Hj(T, Ce(A%)" Uz, Z)) — Hj—i(T, Ce((A)" /s, M)

for every i,j € Z.
For an ideal m C Op coprime to 3 there exists a canonical homology class (cf. [7], §3.1 E[)

(109) I € Hy 1 (T, C.((A®)*JUE, 7).

We recall its definition. By Dirichlet’s unit theorem the homology group Hy_1(Enc+,Z) is a free
Z-module of rank one. Due to the chosen ordering of the embeddings F' < R there is a canonical
choice of a generator 1 € Hp—1(Emc+,Z). Let F C (A¥)*/UY be a fundamental domain for
the action of I'/ Epc 4+ on (A¥)*/UY. Since C.((A*)*/U%,7) = Indgmc . C(F,Z) as I'-modules, by
Shapiro’s Lemma we have 7

H, (T, C.((A®)*/UZ, 7)) = Hy 1(Enes,C(F,Z)) =2 C(F,Z) @ Hy1(Ener,Z).

The homology class ¥, is the class that is mapped to 17 ® N under this isomorphism. If m = Op
then we write ¢ instead of Jy,.
For Uy = U* and Uy = Us = U C U* taking the cap-product with 9 in (108) yields the map

HO(D,C((A™)* U, M)) — Hn1(T,Ce((A™)* /U, M), pr pN9.
Now consider the special case A = Z = M (with trivial -action) and U = U where m C Op is an
ideal that is coprime to X. For a € (A*)*/UY let 14 : Z — C.((A*¥)*/UZ,Z) be the homomorphism

that maps 1 to the characteristic function of the subset {a} C (A¥)*/Uz. Together with the
inclusion Eyn + < I' it induces a homomorphism

shy = corly 0 (ta)s : Hoos(Bemss Z) = Hooo(T, ColA,2)) 5 H, (D, CL((45) U, 7).

where A :=T-a C (A*)*/UY is the T-orbit of a and j : A = (A*)*/U> is the inclusion. Note that

if a1,...,ap is a system of representatives of the I' = Oy -orbits in (A¥)*/UF then we have
h

(110) Um = Y sha, (Nem).
i=1

1 Joc. cit. we considered only the case m = Op
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Lemma 5.1. Let 14 € HY(T,C((A¥)*/UZ,7Z)) be the characteristic function of A. We have
1aN Y =shy(Nem)-

Proof. Let 1« : C.((A®)*JU* Z) — C.((A*¥)*/UY,7Z) be the inclusion. It can be easily seen (by
using corgz;f+ (n¢) = Nem) that the induced homomorphism

te: Hy 1 (D, Ce((A¥)* U 2)) — H, 1 (T, C((A¥)*JUZ Z))

maps ¥ to Un. If we denote the cap-product (108) for Uy = Us = Uz = U2 by 1 then together
with (110) we obtain

h
1aNY = 140 0(9) = 140 Iy = ZlA ﬂ'Shai(ncm)-
=1

The assertion now follows from 14N shy, (Nem) = sha, (Mem) = sha(Pem) if a; € A and 140 shg, (Nem) =
0 if a; ¢ A. O

Let S be a finite set of nonarchimedean places of F' disjoint from . In order to define homology
classes in Hy,—1 (', Intjoe (1 +¢Ox;, Z)) that are related to partial zeta values we recall the definition
of the (A?)*—equivariant homomorphism

(111) A ;1 Co((AF) U™ Z) = Co(F§ x (AF™)'JUPY,Z) — Co(AF,Z)

introduced in ([7], §5.3). Since (A?’E)* / U}g’z is canonically isomorphic to the group of fractional
ideals 79 := T5Y% that are coprime to SUY, we can identify the space (A?)*/U?Z with F§xZ5%,

There exists a canonical isomorphism (see [7], §2 or [6], Prop. 5.3)

1%

Co(F5,2) @ ZITS™] 2 Co(F3,Z) ® Co(I5%,Z) — Co(F§ x I9%,Z) = Co((AF)" /UL, Z).

Hence we can (and will) identify the source of (T11)) with the module C.(F¢,7Z) ® Z[Z¥]. Define

(112) 65 : Ce(Fg,Z) — Co(Fs,Z), [ f
(113) 0PF T — C(ATFZ), Y mald Y malgss
acZs® acZs:x

where 1555 is the characteristic function of @%* := @%“* C A?’E. Furthermore let
(114) Ce(Fs,2) ® Co(A}™,Z) — Co(AF,Z), 95 ® ¢ > (psopr;) - (¢ o pry)

where pr; : (A?) — Fg, pry : A? — A?’E denote the projections. The map is defined as the
composite of dg ® 5?’2 with .

Note that the restriction of a locally constant map ¢ : A? — 7 with compact support to the
subset 1+ ¢Oy C A? is contained in Intjoe 5(1 + ¢Ox, Z) (in fact if we denote the restriction by f

then there exists a fractional ideal a € Z* such that fla+ca is constant for every x € 1 + ¢Oy and
non-zero for only finitely many cosets = + ca). Therefore

(115) CC(AE, Z) — Intjoep(1l + ¢Ox, Z), © = @140

is a well-defined I'-equivariant homomorphism. By abuse of notation we denote the composite of
([[T) and (TT5) by

(116) A% ;1 Co((AF)" /U™, Z) — Tntigey(1 + ¢Ox, Z)
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as well. Finally, we incorporate the archimedean places as well, i.e. we extend (116 to a I'-
equivariant homomorphism

(117) AL : C((AP)* U Z) — Tntioep(1 + ¢Ox, Z) ()

as follows. For a function ¢ : (A¥)* /US> = (A?)*/UJ‘?’Z x F% /Uso — Z with compact support and

Too € FX /Usx we let (-, xs) denote the map (A?)*/U}g’E — Z,x — p(r,2). We define ((117)
by

ASlp) = D elww)  AF (e 2Ux)).

where €(Too) =[]0 sign(20) for Too = (Tv)ujoo € [Ty Fo-
More generally, if U C U is a closed subgroup containing U** and M is an abelian group then
we define

(118) A% C((A®)*JU, M) — Intioep(1 + cOx, Z)(e) @ M

as follows. Note that we can identify the source with the module C.((A*)*/U,Z) ® M and that
C.((A¥)*JU,Z) can be viewed naturally as a submodule of C.((A¥)*/U%,Z). Therefore we can
write elements of the source of as finite sums > 1_; »; ® m; with @1, ..., ¢, € Co((A¥)* /U, Z)
and my,...,m, € M and define

(119) AZ (Z 0 ® ml) = Z A% (i) ® m.
i=1 i=1

Note that if M is a I-module then ((118)) is I'-equivariant. For M = Intjocp(1 + ¢Ox, A) composing
(118) with the map

(120) Intloc,b(l + ¢Ox, Z)(E) &® Intloc,b(l + ¢Oy, A) — Intloc,b(l + ¢Oy, A)(G), f1 ® f2 — f1 . f2
induces a I'-equivariant homomorphism
(121) Ag : Cc((AZ)*/Z/[, Intioep(1 4+ ¢Ox, A)) — Intloc,b(l + ¢Ox, A)(e).

Remark 5.2. We recall the dependence of the map (119) on the set S (compare [7], Remark 5.5).
Let v € S, put 8’ = S\ {v} and assume that ¢ contains US>, Then we have

AG(p) = AGi(p — [@] - ¢)

for every ¢ € C.((A¥)*/U, M). Here w, € F is a uniformizer and [c,] € (A*)* denotes the adele
whose component at v is a uniformizer w, € F); and whose other components are = 1. Similarly,

for the map we obtain
(122) AS(p) = AG (e — =] )
for every o € C.((A¥)* /U, Intioe p(1 + ¢Ox, A)).
For open subgroups Uy,Us C U with US> C Uy, Us we consider the T-equivariant pairing
(123) (-, -)s : C((A®)* /Uy, Tntoe p(1 + cOx, A)) x Co((AZ)* [Ua, Z) — Tntyoe (1 + cOx, A)(e)

defined as the composition of (107) (for Us := Uy NUz and M = Intjecp(1 + ¢Ox, A)) with the
homomorphism A¥ (for U = Us), i.e. we have

(0, V)s = As(p @)
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for ¢ € C((A®)* /Uy, Intioep(1 + ¢Ox, A)) and ¢ € Co((A®)* /U, Z). The pairing (123) induces for
every 1, j € Z a cap-product pairing

(124) N H(D, CUAS)* /Uy, Intioep(1 + <O, A))) x H; (T, Co((AD)* JUs, 7))
— Hj_i(F, Int10C7b(1 + COZ, A)(E))

In particular for Uy = Uy = U C U* and i = 0 taking the cap-product with the homology class
shy (1am) associated to a point a € (A¥)* /U~ yields a map

HO(Fv C((AE)*/U§> Intloc,b(1 + COE; A))) — Hn—l(Fa Intloc,b(1 + COXh A)(G)), P = goﬂ Sha(ncm)‘
Lemma 5.3. For p € H)(I,C((A*)*/UZ, Intioc (1 + ¢Os;, A))) we have
wn Sha(ncm) = COIE,WH_ ((P(a) N ncm)-

Proof. Let evy : C((A¥)* /U, Intiocp(1 + ¢Ox,Z)) — Intioep(l + ¢Os,Z), ¢ — ¢(a) denote the
evaluation map at a. We have
(,ta(m)) = m - eva(p)

for every o € C((A¥)*/UZ, Intiocp(1 + ¢Ox, Z)) and m € Z. Standard functorial properties of the
cap-product with respect to restrictions and corestrictions therefore imply

corl;E(mHr <((eva)* o resgmwr (ﬁ)) N ncm> = kN shy(Nem)
for every k € HY(T, C((A*)*/UZ, Intioe (1 + ¢Ox, A))). O

Remarks 5.4. (a) For the applications in section [6] we need to address the dependence of the
pairing (123)) on the set S. Let v € S, put 8" = S\ {v} and assume that US> CUs = U NUs. By
(1122)) we have

(125) (orh)s = ([@o] - 0, ¢ = [@] - V)5 + (@ — [@0] - 0, )5
for every ¢ € C((A¥)* /Uy, Intioe p(1 + ¢Ox, A)) and ¢ € Co((AZ)* /Ua, Z).

(b) We also need a more concrete description of the pairing (123]) in the case U :=U; CUs = U 2
For that we fix an open subgroup V' C Ug such that V x U 8% C U. For that we write elements of
(AE)* as triples a = (a1, az, o) With a1 = (ay)ves € ng az = (av)v¢SUE,vJ(oo(A?E)* and ax € F5.
Let V C Ug be an open subgroup with V' x U%* C U{. We have

Ag:(la(VxUS’E)) = 1xa,V,S
where X, v,5 denotes the set

Xovs={x€1+¢Oyx |z € aVand ord,(z) > ord,(a,) Vo ¢ SUL U Sy}
Note that if a € Z* denotes the fractional ideal associated to the idele (ay,as) € (A?)* then we
have X, v, Canl+ cOyx. Since
pOY = Z Y(aU>) gy sz @ lald)
a(VXUSZ)e(AZ)* /(VxUS®)
we get

(126) (o, )5 = > P(aU>) 1%, s - plald)

a(VxUSE)e(AZ)* /(V xUS:E)
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Now we consider (124)) for Uy = U C Uy = U>. Taking the cap-product with ¥ yields a map
(127) HUT, C((A®)* /U, Tntype p(1 + ¢Ox, A))) — Hpo1 (T, Intioe (1 + cOx, A)(€)),  p = pN 0.
We define certain canonical elements in the source of (127). For that put N := Np/g : F' — Q and
let N=N>: (A*)* — Q* be the idele norm character given by N((a,),) = [Togs Nu(ay) where

Ny (ay) = lay|, 1 if v is nonarchimedean,
v sign(a,) if v is archimedean.
For an idele a = (ay)ygs € (A¥)* let a = {2 € Ox. | ord,(z) < ord,(a,)for every v € 3, v{ 0o} be
the associated fractional ideal. Note that N(a) = £ N(a) and N(a) = N(a) if a, > 0 for all v { cc.
Moreover if a = v € O, C (A¥)* then we have N(a) = N(v). Consider the map
(128) N o (A¥)* /U — Intioe (1 + ¢Ox, Z),  aU” — N(a) ' Lan14coy, - N.

If we identify the group (A*)*/U* with T* x FY /U, and correspondingly write its elements as
pairs (a, asxUs) then we have

(129) N(a,a00Us0) = €(aoo) N(a) Mgn1icop - N

with €(doo) = [, |00 sign(av) for ace = (av)vjoo € [1yj0e Fi-
Since N(a)"!N(x) € Z for every x € a we see that the right hand side of (129) lies indeed in
Intioe (1 + ¢Ox, Z). The map ((128)) is I'-equivariant because of

(130)  N(y-aU%) = NOa) ™ Latsos - N = N@) ™5 - (Lt eog - N) = W (@)
for every v € I and aU*> € (A¥)*/U*. Tt follows that we can view N'* for k € Z>q as an element
of HY(T, C((A®)* /U, Intioe p(1 + ¢Ox, Z))). We remark that for k& = 0 the map N9 : (A®)*/U* —
Intioe p(1 + ¢Ox, Z) is given by NO(aU%) = 1gn14c0s -

Let m C Op be again an ideal coprime to ¥. For a ray class A € Z/P™ and k € Z>o we
introduce a certain homology class

(131) ok = 915[757c € Hy 1 (T, Intjoe p(1 + ¢Ox, Z)(€))
as follows. We identify the ray class group Z™/P™ with the idele class group (A*)*/UXT, so that
we can (and will) view 2 as a [-orbit in (A¥)*/UZ. The class (I31) is given by

o == (WFUly) N € Hy 1(T,Intyoep(1 + cOx, Z)(¢))
where 1y € HY(T, C((A*¥)*/UZ, 7)) denotes the characteristic function of 2 and where we view A/
for k € Z> as an element of HO(T', C((A¥)*/U*, Intjee (1 +¢Ox, Z)))H Moreover the cup-product
N* U1y is induced by the pairing (106) for M = Intjoc (1 + ¢Os, Z).
Theorem 5.5. We have
(132) Eisp. Noy = (—1)" "1 N(b) ¢(em, A, —k) + (=1)" N(b) 7% ¢(em, AB, —k)
where B = [b] € Z™/P™ denotes the ray class of b.

For the proof we choose a fractional ideal a C Op coprime to S U ¥ such that a~! is a repre-

sentative of 2. If we identify (A¥)*/UY with the product F%/Un s x T5% x F% /Us then 2 is the
I'/ Em +-orbit of the element

a:=(1,a71,1) € F&/Uns x I5% x FL JUs = (A¥)*JUE.
Let Ny € Int(1 + ema~!, Z) denote the polynomial function Ny(z) := N(a) N(z) for z € 1 + ecma~!.
Since N(¢) =1 for every € € Eem 4+ we have Ny € H(Eem 4, Int(1 + ema, Z)).

12Note that for k = 0 the map N° : (A®)*/U* — Intieep(1 + ¢Ox, Z) is given by N°(aU>) = lan14c0x Where a
denotes again the fractional ideal associated to aU™.
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Lemma 5.6. We have of = cor(NF N ncm)H
Proof. Note that N*(a) = j(NF). Together with Lemmas [5.1] and |5.3| we obtain

o = WFuUly)nd = NN (1and) = N* N sha(nem) = corl,, , (N(a)* N 7em)
= corgcm#(j*(./\fé“) N em) = cor(NF N fem).

Proof of Theorem [5.5, By (105)) and Lemma [5.6| we have
EispcNok = EispNcor(Ny Nnem) = res(Bisp.c) N (NF N Nem)
= Eiscmafl,h(to) N (-/\/’(;C N ncm) = NOk N (Eiscmafl,b(t(]) N ncm)-

To finish the proof we recall the relation between Eisn,—15(t0) Vem € Ho(Eem,+ Dpoi(1+ema™t, R))
and values partial zeta functions from ([I], §5). For that we enlarge R, i.e. we pass to the complex
numbers R = C.

To rephrase the result of Beilinson, Kings and Levin suitable for our framework we fix an ideal
n C Op coprime to cm (in the formula below n will be either a or ab). Put L = cmn™!,
H=1+L Ty = FEmnyand ty =t+L € Fo/L. As in ([I], §5) we consider the following
composition of isomorphisms

(133) ®, : C[w] — Dpoi(L,C)ry — Dpoi,r(1+ L, C)ry.

The first isomorphism is given as follows. We view the embeddings &1, ...,&, : ' — R as polynomial
functions on L, i.e. we have (&;)|r € Int(L,C). In fact the powers ™, m € (Z>¢)" form a C-basis
of Int(L,C). As in Example for i = 1,...,n let 2; € Dpoi(L,C) be given by z(§™) = 1if
m = e; and z;(E&™) = 0 if m # e;. If we put w := 21 -...- z, then we have Dpol(L,(C)FO = Clw]
(see [1], Lemma 5.4). Now the isomorphism Clw] = D,o(L,C)r, is induced by the projection
Dpoi(L,C) = Dpoi(L, C)ry,. For the second isomorphism in note that a polynomial function
f: L — C extends uniquely to a polynomial function f : Z 4+ L — C. We obtain an isomorphism
Int(L,C) — Intz(1+L,C), f ~ f|1+1, hence dually an isomorphism Dy 1.(1+ L, C) — Dyoi(L, C).
Passing to I'g-coinvariants yields the isomorphism Dpe1(L, C)ry = Dpol,r.(1 + L, C)ry.
By ([1], 3.44, 5.6 and (5.10)) we have

(30 Eiaesoln) N = (U NG, | 30N Telem, 2 ) o
j=0 '
F(=1)" By iN(ab)’%(cm,QL%,—k) (;lj;n

J=0

Note that the second summand is initially an element of Dpe(1+em(ab)~t, C)r,. However since we
work with complex coefficients we can identify it canonically with the group Dpoi(1 + ema™, C)ry.
To finish the proof note that by @D we have

ko N ark i _ [ N(@FEH"  if k=,
No N ®a(w) = No N Pap(w?) = { 0 otherwise.
We conclude
Eisb,c ﬂglgl = N(gg N (Eiscmafl,b(to) N 77cm)
= (=1)"IN(b)¢(em, A, —k) + (=1)" N(b) "¢ (cm, AB, —F).
13Recall that cor has been defined in (103).
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Now we will give formulas for the values of the partial zeta functions (s(o, s) and the Stickelberger
elements Ogq(K/F,s) (see and (99)) at non-positive integers in terms of a cap-product of an
Eisenstein class with certain homology classes. For that we make specific choices for the coprime
ideals b and ¢ of Op.

To fix ideas let K/F be a finite abelian extension with Galois group G. Let p be a fixed
nonarchimedean place of F' and let S be a finite and set of nonarchimedean places of F' with p & S
and such that S” = SU{p} contains all places that are ramified in K/F. Let § be the nonarchimedean
part of the conductor of L/K. For b we choose any non-trivial ideal of O coprime to S’ and for
¢ we choose a sufficiently high power of p. Namely if p/ is the exact power of p that divides § (the
case f =0 is allowed) then we put ¢ := p™ where m is any integer > max(f,n + 1).

For 0 € G and k € Z>( we define

Q§ = 913757( = (/\/k U 1rec—1(g)) Ny e Hn_l(F,Intloc,b(l +p"O0x,Z)(¢))

where 3 denotes again the set of all prime factors of be and where 1,..-1(,) € HO(T, C((A¥)* /US>, 7))
is the characteristic function of the preimage of ¢ under the reciprocity map rec : (A*)*/U%* — G.

Corollary 5.7. We have
(135) Eispc Moy = (=1)" 7" N(b) (sr(0, —k) + (=1)" N(b) " Cs/ (004, —F).
Recall that o, denotes the image of b under the Artin map Z° — G.

Proof. We choose an ideal m C Op whose set of prime factors is equal to S and so that ¢m is a
multiple of f (hence K C F™). If rec : Z/P™ — Gal(F™/F') denotes the reciprocity isomorphism

then we have
k k
do =D on
A

where the sum is taken over the ray classes 2 € Z /P with rec()|x = o. Thus the assertion
follows from and ((132)). O

Finally, we give a formula similar to for the Stickelberger elements @ g 4(K/F, —k). Recall
that q denotes an additional place not contained in S. Now we choose b := q so that ¥ = {p,q}.
Moreover if g denotes the characteristic of the residue field of q then we can choose the coefficient
ring R to be Z[1/q]. As in ([7], §5.4) by composing the reciprocity map rec : (A*)*/U%* — G with
the inclusion G — Z[G] we view it as a homomorphism

(136) rec : (A®)*/USF — 7Z[q).
The fact that T lies in its kernel implies rec € HY(T', C((A¥)* /US> Z[G])). For k € Z>( we define
(137) diesp = O/ps.eq = WU (invorec)) N € Hy 1 (T, Intioe p(1 + ™ Ox, Z[G]) (€))
where inv denotes the involution Z[G] — Z[G], ¥, cqnolo] = Y peq nolo ™.
Corollary 5.8. With Eis := Eisq ym we have
(138) Eis ol p = (—=1)" N(@) ™ [og] - O57,4(—k).

Note that is an equality in the group ring Z[1/q][G].
Proof. Under the canonical isomorphism

Hp (T, Intioe (1 4+ p™ 05, Z[G])(€)) = Hp—1(I, Intioep(1 + p™Ox, Z)(€)) ® Z[G]

= D Hur (T, Intige (1 + p" O, Z)(€)) © [0]
ceG
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the class (137]) decomposes as gl;( = Y el Q(’j_l ® [o]. Together with (135)) we deduce

Bisnole = (~1)" Y (N@) ¢l g, —k) ~ N(@)isi(o~ ', ~k)) [o]
oelG

= (=1)"N(a) " [og] - Os7,4(—k).

6. DIVISIBILITY PROPERTIES OF STICKELBERGER ELEMENTS

As at the end of last section we let S be a finite set of nonarchimedean places of F' of cardinality
r and let ¥ = {p, q} where p, q are two distinct fixed nonarchimedean places of F' not contained in
S. As before we put I' := Oy; . and consider Z[1/g]-coefficients where g is the residue characteristic
of g. We also put ¢ = p™ (for m sufficiently large). The aim of this section is to prove Theorem
In order to obtain this refinement of Corollary we work in a more general framework than in
the last section, namely we take the cap-product of our adelic Eisenstein class Eis := Eisgym with
certain hyperhomology groups and we work with more general characters than the reciprocity map
(1136]).

To begin with let R be an arbitrary Z[1/qg]-algebra and let & be an open subgroup of (A*)* that
contains U%>. For this data we consider the trilinear map

(139) Bs : Dipol(1+p™Os, Z[1/q])(e) x C((A®)* /U, Intioe p(1+p™Os, R)) x Co((A®)* /U, Z) = R,
(1.9 s W) = [ (Wg)s(o) duo).
1+p™mOx
Here (¥, )5 € Intioep(1 + p™Ox, R) denotes the image of the pair (¥, ) under (123). Note that
(139) is I'-equivariant, i.e. we have

(140) Bs (v, Y9, vp) = Bs(p, ¥, )

for every vy € I.
Now fix k € Z>¢ and let

x: (A®)*/U — R*
be a homomorphism. We define
XNE (A% /U — Tntiep(1 4+ p™Os, R),  ald = (N*)(aU™) @ x(ald)
and consider the map for U = yN* fixed, i.e. we consider the pairing
(141) (-, ks = Bs( XN, +) : Dipar(1+p™ O, Z[1/g])(€) x Ce((A)* /U, Z) — R.
Thus for p € Dipoi(1 + p™Os;, Z[1/g])(€) and o € C.((A*)* /U™, Z) we have
1P = Bl 0) = [ (A, g)s() duo)

1+p™Ox,

Note that (140 and (130)) implies that (yu,v¢)yk,s = X(7) - {¢s ) y,k,5 for every v € T'. Therefore
(141]) induces cap-product pairings

Nyks  H(T, Dipo(1 + p™Os, Z[1/q])(€)) x H;(T, Ce((A¥)* /U, Z)) — H;—i(T, R(x))
for i,j € Z. In particular for ¢ = j = n — 1 we can consider the homology class
Eis My.k,S S HO(F, R(X))

For a place v of F' with v # p,q we let x, : F;; — R* be the local component of x at v. Our
main technical result is
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Theorem 6.1. Let {a,},esus., be a collection of ideals of R that satisfies following properties
(i) For v € S the local component x, is unramified modulo aE and Xy (w,) = N(v)* mod a,.
(i4) For v € So we have xy(—1) = (—=1)* mod a,.

Put R=R/ [loesus., @ and let : R — R be the projection. Then we have

(142) T (BisNyps9) = 0 in Ho(T, R(x)).

The proof of Theorem is given in several steps. It uses ideas introduced in (J20], §3), ([7],
§3) and [10]. In order to deal with the vanishing of the left hand side of (142)) modulo the product
over the infinite places [[,cg_ @, we need the followinﬁ

Lemma 6.2. The image of the pairing (141)) is contained in [[,cg. av-

Proof. By shrinking U if necessary we may assume that it is of the form U = Uy x Uy, where Uy
is an open subgroup of (A?)* with U}g,z CUy C Ufz. The first key ingredient in the proof is the
formula

(143) (U, 0)s = (Pre(¥), Pr(p))s,y

for U € C((A¥)* /U, Intyoep(1 + ¢Osx, R)) and ¢ € C.((A¥)*/U*,7Z). We explain the terms on the
right hand side of (143)). Firstly, we define the map Py as

(144) Py : C((A™)* /U, Intioep (1 + ¢Ox, R)) — C((A7)* /Uy, Intioep(1 + ¢Ox, R))(e)
U s Py (0) = > (Too) - W (-, TooUso)
TooUso €F% JUso

and the map Py by
Py : Co((A%)" /U, Z) — C((AF)*/UF,Z), ¢ Py(p) = Yo el mals).
TooUs €F% [Uso
The pairing
(-, )s,f: C’((A?)*/Uf,lntloc’b(l +¢Ox, R))(€) x Cc((A?)*/UfE,Z) — Intjoep(1 + p™Ox, R)(€)

is defined similarly to (123]) by using the map A? s instead of A% in its definition. More concretely
we define

(145) AG 51 C((AF)" /Uy, Intioep (1 + p™Ox, R))(€) — Intioep(1+p™Ox, R)(e).
similar as (121)) by replacing in its definition the map ((117)) with the map (116)). We then define
@ as the composite of the obvious pairing

C((AF)* /Uy, Intioe (1 + ¢Ox, R)) x Co((AF)* /U, Z) — Co((AF)* /Uy, Intioep(1 + ¢Ox, R))
with (T45).

Secondly, we show that Py (V) has values in Intjocp(1+ ¢Os, [, cq.. ®)- Let a = (ay)vgsus., €
(A?)* be an idele and let a € Z* be the associated fractional ideal. We have

Pf,e(XNk)(auf) = N(a)iklaﬁlﬂsm@z . N* ® Xf(auf) ’ Z Xoo(aoo)e(aoo)kJrl
oo Uso €F% [Uso

14By this we mean x»(u) =1 mod a, for every u € U,
1586e also [7], Prop. 3.8 for a related argument.
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where 7 (resp. Xoo) denotes the nonarchimedean (resp. the archimedean) component of x. Since
Y xeolaso)e(as) ™ = [T G+ xo(-D(=1)** e [T a
U €EFZ U VESso VESso
we get,

(146) vaf(XNk)(auf) = Intloc,b(l + Oy, Z) ® H Oy

’UESOO

Now using (143) and (146) we conclude
nphns = [ (PrON). Press(a) dute) € T] o
p7Os

VESoso

O

For the proof of Theorem we need further preparation. To begin with we recall the definition
of the homology class

(147) 0% € Hyypr 1 (T, Co((ASE)* JUSE 7).

introduced in (7], §3). Its definition is similar to that of the class (109). One only has to replace
the group E with the group Eg . of totally positive S-units of F' (which is free-abelian of rank
n+r — 1) and use the fact that

Hyvtr1 (D, Co(AS®)*US, 2)) = O(F,Z) ® Hysr-1(Bs . )

where now F denotes a fundamental domain for the action of I'/Eg on (A%*)*/U%. The class
99 corresponds to 17 ® ng under this isomorphism where 7g denotes a generator of the group
Hyir—1(Es+,Z). In order to have a canonical choice for ng we have to fix an ordering vy, ..., v,
of the primes in S.

We will reinterpret the class as a I’-hyperhomology class in degree n — 1. For that we
introduce the following (A*)*-modules. Given a subset S; C S define

S1,2
Ce(S1, Z) = Co(Fs, x (AS2)" JUS 2)Us1 = Co(Fs, x (AF) x F2 Uso, Z)Vs1¥Us"

i.e. Co(51,Z) consists of locally constant functions ¢ : Fg, X (A?“Z)* x F% /Uso — 7Z with compact
support such that p(u1z1, uaza, x3Ux) = @(21, 2, 3Us) for every (z1,x2,23) € Fg, X (ASTE)* %
FZ, and (uy,us) € U, x UV, Note that if Sy C Sy then Fy, x (A7*™)* x F% /Us is an open
subset of Fg, x (A?l’z)* x F% /Usx. Hence we can view C.(S2,Z) as a submodule of C.(S51,7Z),
namely C.(S2,7Z) consists of those ¢ € C.(S1,Z) with supp(p) C Fg, x (A%’E)* X FY ) Uso.

Remark 6.3. Let S; C S be a subset, let v € S7 and let ¢ € C.(S1,7Z). Then the function ¢ — [co,]¢
vanishes at every element = € Fyg, X (A?I’E)* x FZ% /Uy whose v-component is = 0, i.e. we have
@ — [wy]e € Cc(S2,Z) with Sy := S \ {v}. E| Thus if we extend (A¥)*-action on C.(S1,Z) to an
action of the group ring Z[(A¥)*] then we have (1 — [w,]) - Cc(S1,Z) C Cc(S2,7Z). Hence we get

(148) [T (= [=]) - Cu(51,2) € C.(0,Z) = C((AV)/UZ, Z).

VES]

16Recall that w, is a prime element of O,.
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We consider the bounded complex of I'-modules
Ao 0-1 O1—r

Ce: 0 > Co Cfl - ler Cfr 0
defined by
C*i = @ CC(Sla Z)
S CS
#8, =i
fori € {0,1,...,7r} and C; =0 if i € {—r,...,—1,0}. The boundary map d_; : C_; — C_;—_; for

i €{0,1,...,r — 1} is defined as follows: if Sy and S; are subsets of S of cardinality ¢ and i + 1
respectively then the (53, S1)-component of 0_; is = 0 if Sy ¢ S and is (—1)" - incl : Cc(S2,Z) —
CC(S1,Z) if S9 € S7 and 51 = {”Ujo, e 7Uji}7 Sy =5, \ {’ij} with 1 <jog<...<yj <r.

For the homology of Cs and hyperhomology of I" with coefficients in Co we have

Lemma 6.4. For every i € Z we have

ey = | ClSHyus=zy ifi=r,
(a) #i(Ca) = { 0 otherwise.

(b) Hy(T',Co) = Hyr (T, Ce((ASF)* /US, 72)).
Proof. (a) For a nonarchimedean place v we consider the short exact sequence

0 —— C(F,2) 222 (R, z) 2229 7, 0

(compare [7], §3.1). Note that it remains exact if we pass to U,-invariants. Thus if let C{ be the
complex [Co(F¥, 7)Y — C.(F,,Z)Y"] concentrated in degree 0 and —1 then its homology vanishes
except in degree —1 where it is = Z. Now the assertion follows from the fact that C, is isomorphic
to the complex (Q_, C¥') ® C.((AS®)*JUSE 7).

(b) There is a homological spectral sequences (see [23], 5.7.8)

E}; = Hi(T, #(Ca)) = Eiyj = Hij(T,Ca).

By (a) it degenerates and we have E; = E?, .
By the above Lemma we can view ((147)) as a hyperhomology class
0% € Hy 1(T,Co) = Hpyrr1(T, Co((ASE)* JUSE 7).

Remark 6.5. Note that Cy = C.((A¥)*/U*,Z). Thus if we view C.((A*)*/U*>,7Z) as a complex
concentrated in degree 0 and if ¢ : Co — C.((A™)*/U*,Z) denotes the forgetful chain map (i.e. it is
the identity in degree 0) then it induces a homomorphism

(149) H, 1(T',C) — H,_1(T, C.((A®)*JU*, 7).

Lemma 3.1 of [7] can be rephrased by stating that the class 99 is mapped to ¥ under the homo-
morphism 1149: .

The following Lemma is the key technical result we use to deal with the places in S in ((142]).
Lemma 6.6. Let v € S and let Sy = S\ {v}. Assume that
(150) xo(z) = |z|;* Vo e Oy x#0.

Then we have

<:U'v @)x,k,S = BSO (;Un [wv] : (XNk)a (1 - [wv])@)
for every p € Dipol(1 +p™Ox,Z[1/q]) and ¢ € C’C((AE)*/UZ,Z)H

1TRecall that w, is a prime element of O,.
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Note that property (150]) is equivalent to require that y,, is unramified and that x,(w,) = N(v)*
holds.

Proof. We may assume that & = V x U0 for some open subset V C Us,. By (125) we have

15 Vs = (] N, (1~ [ma)dso + 0N — [l - (W) @)
Thus to prove it suffices to verify
(152) DN =[] - () 9)sy = 0
for every ¢ € C.((A¥)*/U*,Z). In fact by Remark (b) (and in particular (126)) it is enough to
show that
(153) sy - (N =[] - () ) (0) = 0
for every a € (A¥)*.
Let v denote the prime ideal of Op corresponding to the place v and put ¢ := x,(w,) so that

0=N)* € Z- -1z C R. Fix a = (a1,a2) € (A¥)* = F x (A»*)* and put v = ord,(a1) so that
xo(a1) = ¢”. Let x2 : (A»¥)* — R* be the composition

(AP 21 x (AY5)* — FF x (A"")" = (A%)" 2 (A¥)" /U — R*.
We have x(alf) = ¢” - x2(a2) and by (129)
N(aUZ) = 6(a’OO) N(tyaQ)illt”a2ﬂ1+meE : N

Here ay € Z{WIUE denotes the fractional ideal associated to az and ao € FZ its archimedean
component. Because of o = N(t)* we get

(15) (N = o) (N0 FLonnrpro - V) @ (- xa(a)
= ea) - (N a2) Mugripmos - N*) @ (0771 xa(a2).
Applying to the adele a[w,| ™! yields
(155) (=] - GVM)) (@) = elan)® - (N a2) M Lumsgrnipmos - N¥) @ (0771 xa(a2).
Therefore by combining and we obtain
(N =[] - (™)) (0) = —elaoe)® - (N az) F 1z NF) @ (077" - xala2)

where X = (t*“lag \ tYaz) N (1 + p™Oyx). Now follows from

sy - (V= [2]0NS)) (@) = + (N a2) FL, gy NY) @ (0 xa(a2)) = 0
where we have used X,v,5, N X C tYaz N (v* tag \ tVaz) = 0. O

Now the key observation is that if S; C S is a subset such that (150)) holds for every v € S;
then the pairing (141]) extends canonically to a pairing Dipe1(1+ 9" Ox, Z[1/4q])(€) x Cc(S1,Z) — R.
Namely, we define a pairing

(156) () Ixk.51.8 : Dipol(1 + 9™ Os, Z[1/q])(€) x Ce(S1,Z) — R
by
<:u’7 S0>X,k,5'1,5 = ﬂS\Sl (:U’v H [wv] : (XNk)ﬂ H (1 - [Wv])so)

vES] vEST
for 1 € Dipoi(1 + p™Ox;, Z[1/q])(€) and ¢ € Cc(S1,Z). Note that it is well-defined by (148)). The

pairing (156]) has the following properties
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Lemma 6.7. Let S; C S be a subset such that (150) holds for every v € Sy.
(a) If Sy C S) then we have

(157) {1 P)xk,51,8 = (1 ) x50,
for every p € Dipol(1 +p™Ox, Z[1/q])(€) and ¢ € Cc(S2,7Z).
(b) The pairing (156)) is I'-equivariant, i.e. we have

(V1Y) 3,515 = X (V) - (@ ) xk,51,8
for every vy € T', u € Dipoi(1 +p™Ox, Z[1/q])(€) and ¢ € C.(S1,7Z).
(c) Let {ay}ves,, be a collection of ideals of R such that condition (ii) of Thm[6.1) holds. Then the
image of the pairing (156)) is contained in [[,cq_ 0o

Note that (a) for Sy = () implies in particular that the pairing (156) extends (141)), i.e. we have

(K Pk, 51,8 = (B ©)x k.8
for every p € Dipoi(1 + p™Ox, Z[1/q])(€) and ¢ € C.((A¥)*/U*,Z).

Proof. For (a) it suffices to consider the case S1 = SoU{w}, w &€ So. Note that if So = 0, 51 = {w}
then this is just the statement of Lemma above. The proof there can be easily adapted to the
more general case so we only sketch the argument. Put S3 = S\ S1, Sy = Sng = S3 U {w},

U= [],eq, (@] - (XNF) and ¢ := [Ioes, (1 = [@u])p. Similar to (151), Remark (b) yields
(¥, ¢)s, = ([@wu]¥, (1 = [wu])¢')s; + (1 = [@u]) ¥, ¢')ss
and (157) follows once we have established that ((1 — [wy])¥, ¢")s, = 0. This can be seen by an
almost identical argument as (152]).
The second assertion follows again from (140)) and (130) and the third can be proved by the

same arguments as Lemma Note that one only has to verify that (146]) holds if we replace the
function xA* with [T, g, [@] - (NF). O

Now assume that {a,}yesus,, is a collection of ideals of R such that conditions (i) and (ii) of
Thm. are satisfied. Recall that the second condition is equivalent to require that we have
Xo(®) = |z|;* mod a, for every € O,, x # 0 and v € S. For v € S we put R(v) := R/a, and let
x(v) : (A¥)*/U — R(v)* be the reduction of y modulo a,. More generally, for a non-empty subset
S1 C S we put R(S1) := R/ag, where ag, =3 g a, and let x5 = proy : (A¥)* /U X R+ 2
R(S1)* be the reduction of x modulo ag,. For S; = () we put R(f) = R and x® = x.

We consider the bounded complex

(158)  R,: 0 Ro —2 5 Ry 24 Riy 2 R, —— 0
defined by
Ri= E RS
S CS
#8, =i
fori € {0,1,...,r} and R; = 0if i ¢ {—r,...,—1,0}. The boundary map 0_; : R_; — R_;—1

for i € {0,1,...,7 — 1} is defined as follows. Let So and S; are subsets of S of cardinality i
and i + 1 respectively. The (S, S1)-component of 0_; is = 0 if So ¢ Sp. It is (—1)” - pr, where
pr: R(S2) — R(S1) is the natural projection, if Sy C Sy and S1 = {vj,,...,v;}, S2 = S1\ {v;,}
with 1 < jg < ... < j; < r. Alternatively, the complex may be defined as follows. For v € §
let RY be the complex [R == R/a,] concentrated in degree 0 and —1. Then we have
Re = R QR ... g RYL.
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We can extend the pairing (141)) to a pairing Dipei(1 + p™Ox, Z[1/q]) X Ce — R, i.e. to a chain
map
(159) Ee : Dipol(1 +p"Ox, Z[1/q])(€) ® Co — R
by defining =_; for ¢ € {0,1,...,r} as the direct sum (the sum over all S; C S with #S5; = ) of
the maps
Dlpol(l + meE’ Z[l/Q])(e) ® CC(Sla Z) — R(Sl)7 1% & ("2 <,u7 90>X(51)7k75175

In fact by Lemma (c) we see that the image of (159) is contained in Re ®r ([[,cq. &) That
(159) is indeed a chain map follows from Lemma (a). If we take into account the I'-actions then
Lemma (b) implies that

e D1p01(1 + pm(/)XhZ[l/Q])(f) ® Co — Re @R ( H av) (X)

VESo
is a chain map of I-modules. It therefore induces cap-product pairings

Aks * HHD, Dipar(1 + 9™ Os, Z[1/q))(€)) x Hy(T,C0) — Hy—i(T, Ra @5 ( 11 ) ()
VESeo
for i,j € Z.

Now we make specific choices for R, x and the ideals a,, v € S U S5 namely we choose them to
be “universal”. Firstly, choose an ideal m C O whose set of prime factors is contained in S and
let x be the universal homomorphism from (A*)*/UZ into the group of units of a Z[1/g]-algebra.
More precisely, we consider the Z[1/q]-group algebra R = R™VY := 7Z[1/q][(A¥)* /U] and let x be
the obvious homomorphism

X = X" (AR UL — RY, aUy v [2Uy).
For v € S U Sy we choose for a, to be the smallest ideal of R such that condition (i) resp. (ii) of

Thm. [6.1holds. Specifically, if m, denotes the exponent of v € S occurring the prime decomposition
of the ideal m then we set

G { ker(Z[1/q] [F; /US™] % Z[1/q)[F; /U, ([e20] = N(0)")
ker(Z[1/g][F /U] = Z[1/q)[F /U (DU + (=14

) ifvels,
Uy])) ifv e S

and put .
a, = oy = @, @ Z[1/q][(AZ)* /UL

Note that a, is indeed contained in R since Z[l/q][(AEvv)*/UE’”} is a free Z[1/q]-algebra. With
these choices for R and a, we obtain

Lemma 6.8. For every i € Z we have

() 7 (Re 95 ([T, @) = { Mesus. o ifi=0,

0 otherwise.

(b) HZ(F’ Re QR (H’UESOO a”)) = HZ(F7 (HUESUSOQ av)(X))-

Proof. (a) For v € Sy the quotient (Z[1/q][F;/Uy])/ay is isomorphic to
21/q 17 /U (DU + (~DM0L]) 2 201/g)

hence it is in particular a flat Z[1/q]-algebra. It follows that we have

I1 o = Z[1/q[(A%®) /US| @51/ ) &

VESso VESeo
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For v € § we put R, := Z[1/q)[F; /U™ ), Ry := Z[1/q)[F} /U] /([woUy] ~N(v)*) and let 7, : R, —
R, be the canonical projection so that a, is its kernel. If we denote by RY the complex [R, N R,
concentrated in degree 0 and —1 and put M?° := Z[l/q][(A?’E)*/U}g] @711 /q (Ryes.. t) then we
have

Ko G ( 11 a”) = R ®@zp1/q) - - Ozf1/q) R Szijq M.
VESso

Note that R,, R, and M* are flat as Z[1/q]-modules. Indeed, R, and R® are free as Z[1/q]-modules
and we have R, = Z[1/q][T*']/(T — 1) = Z[1/q] if k = 0 and R, = Z[1/q][T*']/(T — N(v)F) =
Z[1/q,1/N(v)] if k > 0. It follows

s _ Qo @zf1/q) -+ Ozf1/q) v, Ozp1sq M if 1 =0,
I (R. R ( H Clv)) = { 0 otherwise.

'UESOO
_ H’UESUSOQ an lf 7; — 0,
0 otherwise.

(b) follows immediately from (a) using the homological spectral sequences ([23], 5.7.8). O

Proof of Theorem[6.1. We first prove the assertion for R = R"™V, y = x"V, {a,},esus. =

i i i —univ i i . .
{ap™ boesus,, and = g o R — BT = RYV/TT Cguge. Y. Consider the commutative
diagram

H,_(TC.) H,_1(T, C.((A%)* /U, 7))
l@—)EiSﬁX,k,sf lCHEisﬂX,k,sC
Ho(T,Re @R ([Tyes., @) (X)) —— Ho(T', R(x)) —=— Ho(T',R(x))

The first lower horizontal map is induced by the composite of the forgetful map

R.®R<H uv> —>R0®R<H av>= IT «

UESOO ’UESoo UeSoo

with the inclusion [],cg @ < R. Therefore by Lemma (b) the lower sequence of the diagram
can be identified with the exact sequence

]Jb(r7(IIU€SUSa)aU)(X)) __ii_% ]Jb(F7]%(X)) __Zi_$ ]1b(rﬂj?(X))

where ¢ : [] 5., @ < I is the inclusion. Using Remark we obtain

veESU
e (Eis Ny i,50) = Ty 0 14 (]Eis Ny k.S 195) = (mot). (Eis My k.S ﬁs) = 0.

Now we consider the case of an arbitrary ring R, character x : (A*)*/U — R* and collection of
ideals {ay}yesus,, of R satisfying the conditions (i) and (ii). We choose an ideal m C Op whose
set of prime factors is contained in S and such that UY C Y. Then y induces a Z[1/q]-algebra
homomorphism X : R™V — R such that y = X o x"V and X (a'™V) C a, for all v € S U S.

Therefore X induces a homomorphism X : Euniv — R and standard properties of the cap-product
imply
T (EIS ﬂx,k,S ’19) = Y* (Wlmiv (EIS mxunich,S 19)) = 0.
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Now we turn to the proof of Thm. Therefore in the following K/F denotes a finite abelian
extension with Galois group GG and S a finite set of nonarchimedean places of F' that contains all
places that are ramified in K/F. We fix a place p € S and an additional nonarchimedean place q
of F' not contained in S.

Proposition 6.9. For every k € Z>o we have

(160) OsoK/F—kye | [ | ez,
VESUS oo, v#£D

Here q denotes again the residue characteristic of q.

Proof. We apply Thm. [6.1] to the ring R = Z[1/q][G], the character x = invorec : (AP9)* /U —
Z[1/q][G] (where U is a sufficiently small open subgroup of U9 that contains U Siand the collection

of ideals a, ® Z[1/q] := AR Z[1/q] for v € S\ {p}. Thus by (142)) and Cor. |5.8| we have
T ((—1)n N(q) ™" [og] - @S,q(_k)> = mx (Eis Ny 1,9\ () 19) =0 in Hy(T,R(x))

where 7 : Z[1/q][G] — R := (Z[G]/ [Toesus.. v L(,k)) ®Z[1/q] is the projection. Note that because
X is trivial on T, we have m, = m: R = Hy(T, R(x)) — Ho(T, R(x)) = R, hence

(~1)"N(@) " [og] - Osq(—k) €ker(m) = [ TV e Zl1/q.
VESUS oo, v#£D
Since N(q) and [og] are units in Z[1/q][G] we conclude Ogq(K/F, —k) € [[,cs0us.. vt . O

For s € Cput o7(s) := quT(l—N(q)lf‘s[G;l]) € C[G] so that Og 7 (K/F,s) = dr(s)Os(K/F,s).
The following Lemma generalizes Lemmas 62 and 63 in [IO]H

Lemma 6.10. For k € Z>¢ we have

(a) dr(—k) € Annzig) (@D ,er, HOk(v), (Q/Z) (k +1))).

(b) Let m := #(H°(K,Q/Z(k + 1))), let X C Spec Or[1/m] be a nonempty open subset disjoint
from S and let J(X) C Z|G] be the ideal generated by the set {1 — N(q)k”“[aq_l] | g€ X}. Then,

Anngie)(H(K,Q/Z(k +1))) = J(X).
Proof. (a) Let ¢ € T and let v be a place of K above q. Since the Frobenius o4 acts by multiplication

with N(q)*** on H(k(v), (Q/Z)'(k+1)) we have (1 —N(q)'**[og!]) - H(k(v), (Q/Z)'(k +1)) = 0.
Because d7(—k) is a multiple of 1 — N(q)1+k[aq_ 1 we conclude that

sr(—k)- | @ H(k(v), (Q/Z) (k+1)) | = 0.
veT K
(b) The action of G on H°(K,Q/Z(k +1)) is given by a character ¢ : G — (Z/mZ)*. By replacing
K with the fixed field of ker(¢)) if necessary we may assume that ¢ : G — (Z/mZ)* is injective.
The character ¢ induces a ring homomorphism U : Z[G) = Z/mZ. If q € X then ¢(oq) = N(q)F+?
(mod m) hence 1 — N(q)kH[ 11 € ker(¥). In particular we have

(161) N(@f' =1 modm <= log)=1 <= o4=1.

18Note that we have changed the notation; what is called S and S in loc. cit. is called S \ {p} and S here.
191 [10] only the case k = 0 is considered.
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Note that the ring homomorphism Z — Z[G]/J (X) is surjective with non-trivial kernel. Indeed, for
any o € @ there exists q € X with oq = 0, so we have [o]—N(q)**! = o] (1-N(q)**[o;!]) € J(X).
Let m' € Z>; with m'Z = Z N J(X). We will show m’ = m which implies

Annggey (HO(K, Q/Z(k +1))) = ker(®) = J(X).
Firstly, since m’ € J(X) C ker(¥) we have m | m’. Note that for ¢ € X we have
(162) N@*'=1 modm =— N(@1'=1 modm'

Indeed, if 1 —N(q)**! € mZ then o4 = 1 by (I61)) and therefore 1 —N(q)**! = (1—N(q)*"[o,']) €

J(X)NZ = m'Z. To prove m = m’ we consider the action of Gp on the group um/(@)®k+1. It
is given by a character ¢’ : Gp — (Z/m'Z)*. We denote by K’ the fixed field of ker(y)’), by G’
the Galois group of K'/F and by V' : Z[|G'] — Z/m'Z the ring homomorphism induced by 9'. As
before the ideal J(X)' C Z[G'] generated by the set {1 — N(q)**![(c})™*] | g € X} is contained
in ker(¥’) (here oy denotes the Frobenius at q in G'). Now by and a prime q € X
that splits completely in K/F splits completely in K'/F as well. Since K C K’ this implies by
Cebotarev’s density theorem that K = K’, hence m/ = m. (Il

Proof of Thm.[1.1] Tt suffices to show

(163) J := Anngq(H)(K,Q/Z(k+1))) CT:={z € Z[G] | z- Og(K/F, k) e [] IV}
VESUS oo, vF#p

Indeed, the injectivity of (4)) together with Lemmal6.10| (a) implies that é7(—k) € J. Hence
yields
Osr(K/F,—k) = op(—k)-Os(K/F,-ky e J[ .
VESUSoo,v#p
To prove ((163) note that by , for every q € X there exists ng € Z>o with

(164) N(a)" (1 = N(a)**![o; 1)) € T.

By Lemma (b) for any nonempty open subset X C Spec Op[l/m] disjoint from S we have
J(X) = J. In fact since Z[G] is noetherian the Lemma implies that we can choose two disjoint finite
sets X1, Xo C SpecOp[1/m] \ S such that J(X1) = J = J(X2) and so that My := [],cy, N(q)™
and My := [],cx, N(q)"™ are coprime. Now (164) implies M; - J = M; - J(X;) € T for i = 1,2
hence J = ged(My, Ms) - J C T. O

APPENDIX

Topologies and Sheaves. Let X be a set. We consider a collection Open(X) of subsets of X with
the property that (), X € Open(X) and that for any pair U,V € Open(X) we have UNV,UUV €
Open(X). The pair (X, Open(X)) will be called a pre-site. Elements of Open(X) will be called
open subsets of X. For an arbitrary subset X’ C X we let Open(X’) be the set of subsets of X’ of
the form U N X’ with U C X open. Clearly (X', Open(X')) is again a pre-site. Let (X, Open(X))
and (Y, Open(Y)) be pre-sites. A pre-continuous morphism f : (X, Open(X)) — (Y, Open(Y)) is
map f: X — Y such we have f~1(V) € Open(X) for every V € Open(Y).

Let R be a ring. A contravariant functor F : Open(X) — Modg with F(0) = 0 will be called
an R-presheaf on (X, Open(X)). Here we view Open(X) as a category; its set of objects are the
open subsets of X and the only morphisms are inclusion maps. A morphism of R-presheaves
is a morphism of functors. As usual if V' C U are open subsets of X then the image of the
inclusion V' < U under F will be denoted by F(U) — F(V),s — s|y. The category of R-
presheaves on (X, Open(X)) will be denoted by PSh(X, Open(X); R) (or by PSh(X, R) for short,
if it is clear which collection of subsets Open(X) of X we consider). It is an abelian category with
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enough injectives. If (Y, Open(Y)) is another pre-site and if f : X — Y is pre-continuous then for
F € PSh(X, R) we define f.(F) € PSh(Y,R) as usual by f.(F)(V) := F(f~1(V)) for every open
VC_y.

We collect certain facts and notions from ([I2], Ch. C 2, §1), ([I4], §§16-18) and ([22], 7.47)
adapted to the specific framework that is relevant to us. Firstly, we recall the notion of a coverage
and of a site (as defined in [I2], Ch. C 2, Def. 2.1.1).

Definition A.1. (a) Let (X,Open(X)) be a pre-site. A coverage € on Open(X) is function as-
signing to each open subset U of X a collection €(U) of families {U;}icr of elements in Open(U)
called (€-)coverings of U. It has the following property

(C) For open subsets U, V' of X and a covering {U;}icr of U, the family {U; NV }ier is a covering
of UNV.

(b) The triple (X, Open(X), €) consisting of a pre-site (X, Open(X)) and a coverage € on Open(X)
will be called a site.

(c) A continuous morphism f : (X,Open(X),Cx) — (Y,Open(Y),&y) between sites is a map
f: X =Y that is pre-continuous (i.e. we have f~1(V) € Open(X) for every open subset VCY)
and is cover-preserving (i.e. for every V € Open(Y') and a covering V = {V;}icr of V' the collection
of pre-images f~Y(V) := {f~1(V;) Yier is a covering of f~1(V)).

Note that a topological space X defines in a canonical way a site in the above sense which —
by abuse of notation — will be denoted by X as well. Moreover a map between topological spaces
f X — Y is continuous if and only if it is continuous as a morphism between sites.

Let X = (X,Open(X),€) be a site. An R-sheaf on X is an R-presheaf that satisfies the sheaf
property for €-coverings. More precisely we have

Definition A.2. An R-sheaf F on X = (X, Open(X),€) is an R-presheaf on (X, Open(X)) such
that for every open subset U C X and every €-covering {U;}icr of U the sequence of R-modules

5»—)(5|Ui)iel (Si)iEIH(si‘UimUj 78j‘UiﬁUj)(i7j)eI2

0 —— F(U)

15 exact.

HiGI ..F(Ul) H(i,j)EIZ ..F(Ul ﬂ U])

A homomorphism of R-sheaves on X is a morphism of presheaves. The category of R-sheaves
on X will be denoted by Sh(X, R) = Sh(X,Open(X), <; R).

Proposition A.3. (a) Let X be a site. The category Sh(X, R) is R-linear, abelian and has enough
injectives. Moreover it satisfies the axiom (AB5).

(b) Let f: X =Y be a continuous morphism between sites. The functor

(166) fv: SK(X,R) — Sh(Y,R), F — f.(F)
is well-defined and admits an exact right adjoint
(167) f*:Sh(Y,R) — Sh(X,R), G~ f*(G).

For the proof we need some preparation. Let U C X be open. Recall that a subset S of Open(U)
is called a sieve over U if for every pair of open subsets U, V of X with U € S and V' C U we have
V e S. A coverage € on Open(X) is called sifted if every covering is a sieve. Given an arbitrary
coverage € on Open(X) there is an associated sifted coverage € which defines the same category of
R-sheaves. We recall its definition. Given an open subset U C X and a collection U = {U; }ier of
open subsets of U the set of open subsets of U

SU) = {VeODpen(X)|Jie,VCU;}

20Note that a site as defined above is usually not a site in the sense ([I4], 17.2.1) and (|22], Tag 00VH).
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is a sieve. It is called the sieve generated by U. If € be a coverage on Open(X) then € is the

coverage defined by €(U) := {S(U) |U € €(U)} for every open U C X. By ([12], Ch. C 2, Lemma
2.1.3) we have Sh(X, Open(X), €¢; R) = Sh(X, Open(X), &; R). We recall

Definition A.4. (a) A sifted coverage € on Open(X) is called Grothendieck topology if the following
holds

(GT1) For every open U C X the mazimal sieve over U (i.e. the sieve Open(U)) is a €-covering.

(GT2) IfU is a €-covering of U and if S is another sieve over U such that Sy := {W € Open(V) |
W e S} is a €-covering of V' for every V. € U then S is a €-covering of U.

A triple (X, Open(X), €) consisting of a pre-site (X, Open(X)) and a Grothendieck coverage € on
Open(X) will be called a Grothendieck site. E|

(b) Let X = (X, 0pen(X),Cx) and Y = (Y,Open(Y'),Cy) be Grothendieck sites. A Grothendieck
continuous morphism f : X — Y is a map of the underlying sets that is pre-continuous and
so0 that for every open subset V. C'Y and Cy-covering V of V the sieve S(f~1(V)) generated by
YV ={f~YW) | W €V} is a €x-covering of f~L1(V).

By ([12], Ch. C 2, Prop. 2.1.9) given a coverage € on Open(X) there is a smallest Grothendieck
coverage € on Open(X) containing € (i.e. we have €(U) C €(U) for every open U C X) and for
this coverage we have Sh(X, R) = Sh(X, Open(X), €; R) = Sh(X, Open(X), €; R). By ([14], 9.6.2
and 18.1.6) we conclude in particular that the category Sh(X, R) is abelian with enough injectives
(see [14], 9.6.2 and 18.1.6). This proves the first part of Prop.|A.3| For (b) we need the following

Lemma A.5. Let f : (X,Open(X),Cx) — (Y, Open(Y),Cy) be a continuous morphism between
sites. Then f is a Grothendieck continuous morphism, when viewed as a morphism between the
Grothendieck sites (X, Open(X),Cx) — (Y, Open(Y), €y ).
Proof. We define a coverage © on Open(Y') by letting ®(V') for V € Open(Y’) consists of all sieves
&’ over V such that the sieve S(f~1(8") over f~1(V) generated by f~1(S") = {f~*(W) | W € S}
is a € x-covering of f~1(V). One easily verifies that D is a Grothendieck coverage that contains €y
hence also Cy-. O
Proof of Prop.[A.3 (b). By the Lemma and ([14], 17.5.1) we have f.(F) € Sh(Y,R) for F €
Sh(X, R). This proves that (166 is well-defined and that it admits a right adjoint (167]). Since the
map f~1: Open(Y) — Open(X),V — f~1(V) — when viewed as a functor — is clearly left exact
(compare [14], Def. 3.3.1) the functor (167) is exact by ([14], 17.5.2 (iv)). O
Remark A.6. The key step in the proof that the category Sh(X, R) has enough injectives given
in [13] is to show that Sh(X, R) has a system of generators. In fact in ([14], 18.1.6) it is shown
that for every open subset U C X there exists a sheaf Ry € Sh(X, R) with the property
Homgy,x g (Ru, F) = F(U)

for every F € Sh(X, R), i.e. the sheaf Ry represents the functor Sh(X, R) — Modg, F — F(U).
The family of sheaves { Ri }reppen(x) 1S then a system of generators of Sh(X, R).
Corollary A.7. The functor of global sections
(168) H°(X,-):Sh(X,R) — Modg, Fw— HYX,F):=F(X)
has an exact left adjoint

Modgr — Sh(X,R), M +— Mx.
We call My the sheaf on X associated to the R-module M.

2INote that a Grothendieck site is a site in the sense of ([I4], 17.2.1) as well as in the sense of ([22], Tag 00VH).
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Proof. The category of sites has a final object pt, the one-pointed topological space. Let f : X — pt
be the unique morphism. For pt we have Sh(pt, R) = Modg and f, corresponds to the functor
under this identification. Therefore the assertion is special case of Prop. (b), namely the
case of he morphism f: X — pt. O

Recall that the sheaf cohomology groups H®(X,F) are defined as the right derived functors of
(168). More precisely for ¢ € Z>( the i-th right derived functor of (168)) will be denoted by

HY(X,-):Sh(X,R) — Modg, F+ H'(X,F).
We note that if f : X — Y is a continuous morphism between sites then by Prop. (b) the

functor f, is left exact and preserves injectives. As in the case of usual topological spaces this
implies that there exists a Leray spectral sequence

(169) EY¥ =H'(Y,R°f.F) = E"™° =H""(X,F)

for every R-sheaf F on X.

G-equivariant sheaf. Let G be a group and let X = (X, Open(X),Cx) be a site equipped with
a continuous G-action G x X — X, (g,z) — ¢ -x. By that we mean that the underlying set X is

equipped with a G-action G x X — X, (g,x) — ¢z and that g- : X — X,z + g-x is a continuous
morphism of sites for every g € G.

Definition A.8. Let R be a ring and let X be a site equipped with a continuous G-action.

(a) A G-equivariant R-sheaf F on X is an R-sheaf together with a collection of isomorphisms
pg.F + F = g« F such that (g1)«(pgs,F) © Pg1,F = Pgo-gr, 7 for all gi,92 € G.

(b) A morphism of G-equivariant R-sheaves o : F — G is a morphism of sheaves that commutes —
in the obvious sense — with the isomorphisms pg 7, pg g for every g € G.

(c) The category of G-equivariant R-sheaves on X will be denoted by Sh(X,G, R).

The collection of isomorphisms in (a) will be called the G-action on F. Note that it induces a
G-action on the R-module of global sections H°(X, F) = F(X).

Proposition A.9. (a) The category Sh(X,G, R) is an R-linear abelian category which satisfies
aziom (AB5).

(b) The forgetful functor

(170) Sh(X,G, R) — Sh(X,R)

1s exact and has an exact left adjoint. In particular it preserves injectives.

(¢) The category Sh(X,G, R) has enough injectives.

(d) The functor of global sections H°(X, -) : Sh(X,G,R) — Modpgq) has an ezact left adjoint.

Proof. (a) and the exactness of ((170]) follow easily from Prop. (a) and from the fact that the
kernel and cokernel of a morphism of G-equivariant R-sheaves v : F — G in the category Sh(X, R)
carry again a canonical G-action. The left adjoint

(171) Ind® : Sh(X,R) — Sh(X,G,R)
of (170) can be defined as follows. For F € Sh(X, R) the underlying sheaf of Ind®(F) is given by
Ind(F) = €P g.(F).
geG
For g € G we define the isomorphism
pg : d%(F) = P he(F) — g.(nd(F)) = P (gh)(F)

heG heG
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by just permuting the individual summands h.(F) of Ind(F) indexed by h € G via left multipli-
cation with g~!, i.e. the summand h.(F) is mapped identically to the summand g.((g~'h)«(F)) of
9+(Ind%(F)). Clearly the functor is exact.

(c) It suffices to see that Sh(X,G, R) admits generators. For an open subset U C X let Ry
be the sheaf representing the functor Sh(X,R) — Modg, F — F(U) (see Remark [A.6). Then
Ind® Ry represents the functor Sh(X,G, R) — Modg, F +— F(U). This implies that the family
{Ind® RU} e % open 1S @ System of generators of Sh(X, G, R).

(d) follows immediately from Cor. using the fact that a G-action on a R-module M induces
a G-action on the sheaf My associated to M. O

Remark A.10. In section[3|we have considered equivariant sheaves twisted by a character x : G —
R*. To explain this notion let (F,(pg,7)gec) be a G-equivariant R-sheaf. We define the twisted
G-equivariant R-sheaf F(x) by F(x) = F and py r(y) = X(9) - pg.7 for g € G.

We recall the definition of equivariant sheaf cohomology and the spectral sequence linking it to
ordinary sheaf cohomology. For F € Sh(X,G, R) taking the G-invariant elements of H°(X,F)
define a left exact functor

(172) Sh(X,G,R) — Modg, F+— H(X,F)C.
Its right derived functors will be denoted by
HY(X,G,-):Sh(X,G,R) — Modg, F— H'(X,G,F).

The cohomology groups H*(X, G, F) are called the equivariant cohomology of X with coefficient
in the G-equivariant R-sheaf F.

Proposition A.11. For F € Sh(X, G, R) there exists a spectral sequence
(173) Ey® = Exthyg (R, H (X, F)) = E'"° = H'"(X,G, F).
Proof. The functor (172)) factors as

FsHO(X,F) M—Homp g (R,M)
—_—

(174) Sh(X,G, R) Mod e s Modpg.

By Prop. (d) the first functor has an exact left adjoint, hence it preserves injectives. Therefore
there exists a Grothendieck spectral sequence corresponding to the decomposition of the
functor . Finally by Prop. (b) for the Es-terms of said spectral sequence we have E}% =
Ext%[G] (R,H*(X,F)). O

Let f: X — Y be a continuous morphism between sites. For F € Sh(Y, R) passing in the
adjunction map F — f.(f*(F)) to global sections yields a homomorphism
(175) HY(Y,F) — H(X, f*(F)).
As in ([II], Ch. IL.5) the exactness of f* (see Prop. [A.3| (b)) implies that (175) extends to a
morphism of J-functors
(176) HYY,F) — HY(X, f*(F)) i>0, FecShY,R).

Similarly, if X and Y are equipped with a continuous G-action and if f is G-equivariant and if
F is a G-equivariant sheaf on Y then is a homomorphism of R[G]-modules hence passing in
to G-invariants leads to homomorphism H°(Y, G, F) — HY(X,G, f*(F)) that extends to a
morphism of J-functors

(177) H'(Y,G,F) — H (X,G, f*(F)) i>0, FeShY,G,R).

as well.
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Some homological algebra. Let F' : A — B and G : B — C be left exact additive functors
between abelian categories and assume that A and B have enough injectives. There exists obvious
morphisms

(178) D RIG(F(A)) — R(GoF)(A) VA€ Ai>0,
(179) P Ri(G o F)(A) — G(RIF(A)) VYA€ Ai>0.

If there exists a Grothendieck spectral sequence associated to the composition of functors G o
F: A — C then are just edge morphisms. Also the following Lemma would be a simple
consequence of said spectral sequence. However we will apply it in situations where the existence
of the Grothendieck spectral sequence is unclear.

Lemma A.12. Let n € Z>1 such that R'F(A) =0 for all i =1,...,n. Then the morphism (178
is an epimorphism for i =0,1,...,n and

(180) P RH(G o F)(A) — G(RM™F(A))

is an isomorphism. In particular, if additionally we have F(A) = 0 then R (G o F)(A) =0 for all
1=0,1,...,n.

Proof. We prove the assertion by induction on n. So assume that n > 1 and that the assertion
holds for n — 1. Let 0 — A — I — A’ — 0 be a short exact sequence in A with I being
injective. Then by assumption the sequence 0 — F(A) — F(I) — F(A’) — 0 is exact as well
and we have R'F(A’) =2 RF'F(A) =0 for i = 1,...,n — 1. The assertion regarding follows
by a diagram chase in

...RIG(F(A) —— R'G(F(I)) —— RGFA) —— RHYGFA)...

lefj)’i legl)’i lei‘l/)’i J{eg)’wl
. .Ri(GoF)(A) —— Ri(GoF)(I) — R(GoF)A) — R(GoF)(A)...

using the fact that R'(G o F)(I) =0 for i > 1 and that €%, is an epimorphism for i =1,...,n — 1.
Moreover that (180]) is an isomorphism follows from the commutativity of the diagram

R"(GoF)(A') —— R™(Go F)(A)

le‘(j),n J/ef42)7n+1

G(R'F(A")) —— G(R"1F(A)).
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