SPECTRA OF SUBRINGS OF COHOMOLOGY GENERATED BY CHARACTERISTIC CLASSES FOR FUSION SYSTEMS

IAN J. LEARY AND JASON SEMERARO

Abstract. If F is a saturated fusion system on a finite p-group S, we define the Chern subring $\text{Ch}(F)$ of F to be the subring of $H^*(S; \mathbb{F}_p)$ generated by Chern classes of F-stable representations of S. We show that $\text{Ch}(F)$ is contained in $H^*(F; \mathbb{F}_p)$ and apply a result of Green and the first author to describe its ideal spectrum in terms of a certain category of elementary abelian subgroups. We obtain similar results for various related subrings, including those generated by characteristic classes of F-stable S-sets.

1. Introduction

Let G be a finite group and k be a field of characteristic p. Quillen’s description [12] of the spectrum of the mod-p cohomology ring of G has been extremely useful in representation theory. The support variety of a kG-module M is a subvariety of the spectrum, subvarieties correspond to ideals in the cohomology ring, and the ideal defining the support variety is the kernel of the ring homomorphism $H^*(G) = \text{Ext}_{F_pG}(F_p, F_p) \rightarrow \text{Ext}_{kG}(M, M)$. Just as ideals of $H^*(G)$ correspond to subvarieties of the spectrum, subrings of $H^*(G)$ correspond to quotients of the spectrum, with subrings over which $H^*(G)$ is integral corresponding to quotients with finite fibres. In [9] Green and one of the current authors gave a description of the spectra of subrings of $H^*(G)$ that are both ‘large’ and ‘natural’, paying particular attention to the subring generated by Chern classes of representations of G. A later article applied these results to the subring of $H^*(G)$ generated by characteristic classes of homomorphisms from G to the symmetric group Σ_n for all n [10].

Our aim is to extend many of these results concerning subrings of $H^*(G)$ to analogous results for subrings of the cohomology of a saturated fusion system. Recall that a fusion system \mathcal{F} on a finite p-group S is a category with $\text{Ob}(\mathcal{F}) = \{P \leq S\}$ and $\text{Mor}(\mathcal{F})$ a set of injective group homomorphisms between subgroups satisfying some weak axioms. \mathcal{F} is saturated if it satisfies two additional ‘Sylow’ axioms which hold whenever $\mathcal{F} = \mathcal{F}_S(G)$ is the fusion system of a group G with Sylow p-subgroup S, where morphisms are given by G-conjugation maps. The cohomology $H^*(\mathcal{F})$ of a saturated fusion system \mathcal{F} is defined to be the subring of \mathcal{F}-stable elements in $H^*(S)$ (see Section 3.1).

We now fix a finite p-group S and let \mathcal{F} be a saturated fusion system on S. We define categories of elementary abelian subgroups of S by stipulating that an injective homomorphism $f \in \text{Hom}(E_1, E_2)$ is in

$\mathcal{E}(\mathcal{F})$ iff there exists $\varphi \in \mathcal{F}$ such that for all $e \in E_1$, $f(e) = \varphi(e)$;

$\mathcal{E}'(\mathcal{F})$ iff for all $e \in E_1$ there exists $\varphi \in \mathcal{F}$ such that $f(e) = \varphi(e)$;
\[\mathcal{E}'_R(\mathcal{F}) \text{ iff for all } e \in E_1 \text{ there exists } \varphi \in \mathcal{F} \text{ such that } f(e) \in \{ \varphi(e), \varphi(e^{-1}) \}; \]
\[\mathcal{E}'_p(\mathcal{F}) \text{ iff for all } e \in E_1, \langle e \rangle \text{ and } \langle f(e) \rangle \text{ are } \mathcal{F}\text{-conjugate}; \]
\[\mathcal{A}(\mathcal{F}) \text{ iff } f(U) \text{ is } \mathcal{F}\text{-conjugate to } U \text{ for all } U \leq E_1. \]

Note that if \(f \in \mathcal{E}(\mathcal{F}) \) is equivalent to \(f \in \text{Hom}_\mathcal{F}(E_1, E_2) \) and that by \(\langle e \rangle \) we mean the subgroup generated by \(e \).

Our results describe various spectra of subrings of \(H^*(\mathcal{F}) \) in terms of the above categories. Assume that \(k \) is algebraically closed, and for a finitely generated commutative \(\mathbb{F}_p \)-algebra \(R \) write \(V_R(k) := \text{Hom}(R, k) \) for the variety of ring homomorphisms from \(R \) to \(k \) with the Zariski topology generated by closed sets of form

\[\{ \phi \in \text{Hom}(R, k) \mid \ker(\phi) \supseteq I \}, \]

for an ideal \(I \subseteq R \). Note that any ring homomorphism \(f : R \to R' \) determines a mapping of varieties

\[f^* : V_{R'}(k) \to V_R(k) \text{ given by } \phi \mapsto \phi \circ f. \]

Moreover if \(R' \) is a finitely generated \(f(R) \)-module then \(f^* \) has finite fibres. Note also that there is a continuous map

\[V_R(k) \to \text{Spec}(R), \text{ given by } \phi \mapsto \ker(\phi). \]

Depending on the choice of \(k \) this can be made surjective. Since \(H^*(S) \) is a graded finitely generated \(\mathbb{F}_p \)-algebra, \(h^*(S) := H^*(S)/\sqrt{0} \) is a finitely generated \textit{commutative} \(\mathbb{F}_p \)-algebra (here \(\sqrt{0} \) denotes the ideal generated by elements which square to 0) and we write

\[X_S(k) := V_{h^*(S)}(k) = \text{Hom}(h^*(S), k) \]

for the associated variety. Note that a group homomorphism \(f : P \to Q \) induces a continuous map \(f_* : X_P(k) \to X_Q(k) \) between the associated varieties. With the above terminology, Linckelmann has shown [11] that there exists a homeomorphism

\[\colim_{\mathcal{E}(\mathcal{F})} X_E(k) \to V_R(k) \]

where \(R = H^*(\mathcal{F}) \subseteq H^*(S) \). This is an analogue of Quillen’s description of the spectrum of \(H^*(G) \) mentioned above. In Section 3.2 we consider subrings of \(H^*(\mathcal{F}) \) generated by Chern classes of \(\mathcal{F}\)-stable ordinary representations of \(S \): those for which the associated character is constant on \(\mathcal{F}\)-conjugacy classes (see Section 2). Our first main result may be viewed as an analogue of [9, Proposition 7.1] for fusion systems:

Theorem 1.1. Let \(\mathcal{F} \) be a saturated fusion system on a finite \(p \)-group \(S \) and let \(R \) be the subring of \(H^*(\mathcal{F}) \) generated by Chern classes of:

1. representations of \(S \);
2. real representations of \(S \);
3. permutation representations of \(S \).

which are \(\mathcal{F}\)-stable. Then in each case, there is a homeomorphism

\[\colim_{\mathcal{C}(R)} X_{E}(k) \to V_{R}(k) \]

where the category \(\mathcal{C}(R) \) is:

1. \(\mathcal{E}(\mathcal{F}) \);
2. \(\mathcal{E}'_R(\mathcal{F}) \);
3. \(\mathcal{E}'_p(\mathcal{F}) \).
To prove Theorem 1.1, we first observe that in each case the subring R is both large and natural (see Definition 4.2). We then apply a result of Green and the first named author, Theorem 4.3, to deduce the existence of a category $\mathcal{C}(R)$ as in the conclusion of Theorem 1.1. To describe the morphisms in $\mathcal{C}(R)$ we exploit the fact that they are uniquely determined by how they interact with the characters of the representations we consider (see Lemma 4.4). In case (3), we rely on the existence of an explicit basis for the ring of \mathcal{F}-stable permutation characters of S determined by Reeh [13].

In [10] the authors study, for a finite group G, the variety for the subring $S(G)$ of $H^*(G)$ generated by the images of the maps $\rho^*: H^*(\Sigma_n) \to H^*(G)$ (there the ring $S(G)$ was denoted by $S_h(G)$ which clashes with our use of S as a Sylow p-group). Our second main result may be regarded as an analogue of [10, Theorem 2.6] for fusion systems:

Theorem 1.2. Let \mathcal{F} be a saturated fusion system on a finite p-group S and let R be the subring of $H^*(S)$ generated by characteristic classes of \mathcal{F}-stable permutations of S. Then there is a homeomorphism:

$$\colim_{A(\mathcal{F})} X_E(k) \to V_R(k).$$

Our argument to prove Theorem 1.2 is an adaptation of that found in [10], for finite groups, and relies on particular properties of Reeh’s basis of \mathcal{F}-stable permutation characters of S. Note that, unlike for the subrings considered in Theorem 1.1, we have been unable to show that the ring R in Theorem 1.2 can be described in terms of images in cohomology of maps between classifying spaces. Nonetheless we conjecture that such a description should exist (see Conjecture 6.3).

We close the introduction with some remarks pertaining to a possible extension of Theorems 1.1 and 1.2 to the case of fusion systems on infinite groups. Indeed, the main result of [9] is concerned with varieties for the cohomology of any compact Lie group. The fusion system of a such a group is a particular example of a p-local compact group which is a saturated fusion system on a discrete p-toral group (a p-group with a finite index infinite torus $(\mathbb{Z}/p^\infty)^n$, for some $n \geq 1$). There is a version of Quillen stratification for such groups (see [3, Theorem 5.1]), and it has been shown that certain classes of p-local compact groups, for example those coming from finite loop spaces and p-compact groups, admit unitary embeddings, at least in one of two possible senses (see [6]). Observe that the existence of unitary embeddings for compact Lie groups is a key ingredient in the proof of [9, Proposition 2.2].

Acknowledgements: The second author gratefully acknowledges funding from the UK Research Council EPSRC for the project EP/W028794/1. The first author visited Universität Bielefeld while working on this article, and gratefully acknowledges their hospitality. The visit was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG), Project-ID 491392403 – TRR 358.

2. **\mathcal{F}-stable representations and group actions**

We adopt standard notation for fusion systems as found, for example, in [1]. Let \mathcal{F} be a saturated fusion system on a finite p-group S.
2.1. The ring of \mathcal{F}-stable representations. Recall that an object $P \leq S$ is \mathcal{F}-centric if for all morphisms $\varphi \in \text{Hom}_\mathcal{F}(P,S)$, we have $C_S(\varphi(P)) \leq \varphi(P)$. Let \mathcal{F}^c denote the set of \mathcal{F}-centric subgroups.

Definition 2.1. The orbit category $\mathcal{O} = O(\mathcal{F})$ of \mathcal{F} is the category defined via:

(a) $\text{ob}(\mathcal{O}) = \{P \mid P \leq S\}$;
(b) for each $P, Q \leq S$, $\text{Hom}_\mathcal{O}(P, Q) = \text{Rep}_\mathcal{F}(P, Q) := \text{Hom}_\mathcal{F}(P, Q)/\text{Inn}(Q)$ is the set of $\text{Inn}(Q)$-orbits of $\text{Hom}_\mathcal{F}(P, Q)$ (with action given by right composition of morphisms).

The centric orbit category $O(\mathcal{F}^c)$ is the full subcategory of \mathcal{O} with object set \mathcal{F}^c.

Definition 2.2. A character $\chi \in \text{Irr}(S)$ is \mathcal{F}-stable if for all $g \in S$ and morphisms $\varphi \in \text{Hom}_\mathcal{F}((g), S)$, $\chi(\varphi(g)) = \chi(g)$. That is, χ takes the same value on all members of each \mathcal{F}-conjugacy class of S. Denote by $C(\mathcal{F})$ the subring of $C(S)$ (the character ring of S) consisting of \mathcal{F}-stable representations. Also denote by $C_n(S)$ and $C_n(\mathcal{F})$ the subsets of characters of degree n.

Following [7], for a natural number n, and group G let $\text{Rep}_n(G) = \text{Rep}(G, U(n))$ denote the set of isomorphism classes of n-dimensional ordinary representations of G. Let $R(G)$ denote the representation ring of G.

Definition 2.3. A complex representation ρ of S is \mathcal{F}-fusion-preserving if $\rho|_P = \rho|_{\varphi(P)} \circ \varphi \in \text{Rep}_n(P)$ for any $P \leq S$ and $\varphi \in \text{Hom}_\mathcal{F}(P, S)$; let $\text{Rep}_n(\mathcal{F})$ denote the set of isomorphism classes of n-dimensional complex \mathcal{F}-fusion preserving representations of S.

Note that $\rho \in \text{Rep}_n(\mathcal{F})$ if and only if $\chi_\rho \in C_n(\mathcal{F})$ where χ_ρ is the character associated to ρ. Using the Alperin-Goldschmidt fusion theorem for fusion systems, one can show:

Proposition 2.4. Let \mathcal{F} be a saturated fusion system over S. Then

$$\lim_{\mathcal{O}(\mathcal{F}^c)} \text{Rep}_n(P) \cong \text{Rep}_n(\mathcal{F}).$$

Proof. Projection onto $\text{Rep}_n(S)$ induces a bijection

$$\lim_\mathcal{F} \text{Rep}_n(P) \to \text{Rep}_n(\mathcal{F})$$

with inverse given by $\rho \mapsto (\rho|_P)_{P \in \text{ob}(\mathcal{F})}$ for each $\rho \in \text{Rep}_n(\mathcal{F})$; this is well-defined because $(\rho|_P)_{P \in \text{ob}(\mathcal{F})} \in \lim_\mathcal{F} \text{Rep}_n(P)$ if and only if ρ is \mathcal{F}-fusion preserving. Now, arguing as in [7, Proposition 3.6] we see that the indexing category \mathcal{F} may be replaced by \mathcal{F}^c (by the Alperin-Goldschmidt fusion theorem), and then by $O(\mathcal{F}^c)$ since characters are class functions.

Now let $R(\mathcal{F})$ be the subring of \mathcal{F}-stable representations in $R(S)$ and $C(\mathcal{F})$ be the Grothendieck group of

$$\bigcup_{n=1}^{\infty} C_n(\mathcal{F}).$$

Write $S^\mathcal{F}$ for a set of \mathcal{F}-conjugacy class representatives of S.

Theorem 2.5. $C(\mathcal{F}) \otimes \mathbb{C}$ is equal to the space of \mathbb{C}-class functions on $S^\mathcal{F}$.
Proof. See [2, Lemma 2.1]. □

From this result, we easily deduce that two elements are F-conjugate if their character values coincide:

Corollary 2.6. If $s, t \in S$ are such that $\chi(s) = \chi(t)$ for all $\chi \in C(F)$ then s and t are F-conjugate.

2.2. The ring of F-stable S-sets.

If S acts on a finite set X and $\phi : P \to S$ is a homomorphism, denote by ϕX the P-set X with action given in terms of the given action of S by $p \cdot x = \phi(p)x$.

Definition 2.7. Let X be a finite S-set.

1. X is said to be F-stable if for every $P \leq S$ and every morphism $\phi : P \to S$ in F the P-sets X and ϕX are isomorphic.
2. X is said to be linearly F-stable if the associated permutation character is F-stable.

Plainly any F-stable S-set is linearly F-stable, but the converse is not true. For example [9, Section 7] discusses an example of this phenomenon for $G = \text{GL}(3, \mathbb{F}_p)$. Note that we may, equivalently define a homomorphism $\rho : S \to \Sigma_n$ associated to S-set X of cardinality n, to be F-stable if for all $P \leq S$ and all morphisms $\phi : P \to S$ in F, the morphisms $\rho|_P$ and $\rho \circ \phi$ differ by an inner automorphism of Σ_n.

If X is an F-stable S-set and $Q \leq S$, let $\Phi_Q(X) = |X^Q|$ denote the number of Q-fixed points of X. To prove Theorem 1.2 we shall need to know that there are sufficiently many F-stable permutation representations. Reeh [13] shows the following:

Proposition 2.8. For each F-conjugacy class representative P there is an F-stable S-set α_P with the properties that:

1. $\Phi_Q(\alpha_P) = 0$ unless Q is F-subconjugate to P; and
2. $\Phi_{P'}(\alpha_P) = |N_S(P')/P'|$ when P' is a fully F-normalised F-conjugate of P.

Proof. See [13, Proposition 4.8]. □

In fact, Reeh shows that the S-sets α_Q as Q ranges over the F-isomorphism classes of subgroups of S can be chosen to form an additive basis for the Burnside ring of F-stable S-sets, but we will not need this.

3. Cohomology of fusion systems and the Chern subring

As in the previous section, we let F be a saturated fusion system on a finite p-group S. As shown by Chermak, to F we may associate a unique (up to isomorphism) centric linking system L whose p-completed nerve plays the role of the classifying space of F. In particular, when $F = F_S(G)$ is the fusion system of a finite group with Sylow p-subgroup S, we have $|L|^p_\wedge \simeq B\mathbb{G}_p^\wedge$. The triple (S, F, L) is sometimes referred to as a p-local finite group.
3.1. The cohomology ring of a fusion system. Following [5, Section 5] we define the cohomology of \mathcal{F} as follows:

Definition 3.1. The subring $H^*(\mathcal{F}; \mathbb{F}_p)$ of \mathcal{F}-stable elements of $H^*(S, \mathbb{F}_p)$ is the preimage in $H^*(S, \mathbb{F}_p)$ of the natural map

$$H^*(S, \mathbb{F}_p) \to \lim_{\mathcal{O}(\mathcal{F}^*)} H^*(-; \mathbb{F}_p).$$

From [7, Theorem 4.2], we obtain:

Theorem 3.2. There is an isomorphism

$$H^*(|\mathcal{L}^\wedge_p|; \mathbb{F}_p) \cong \lim_{\mathcal{O}(\mathcal{F}^*)} H^*(BP; \mathbb{F}_p).$$

In particular, the rings $H^*(\mathcal{F}; \mathbb{F}_p)$ and $H^*(|\mathcal{L}^\wedge_p|; \mathbb{F}_p)$ are isomorphic.

We remark that in [7, Theorem 5.3], for $m > 0$, the authors show that the natural map

$$\psi_m : [|\mathcal{L}^\wedge_p|, BU(m)^\wedge_p] \to \text{Rep}_m(\mathcal{F})$$

satisfies:

1. for each $\rho \in \text{Rep}_m(\mathcal{F})$, for each sufficiently large $M > 0$, $\rho \oplus M\text{reg} \in \text{im}(\psi_{m+M|S|})$;
2. If $f_1, f_2 \in [|\mathcal{L}^\wedge_p, BU(m)^\wedge_p]$ are such that $\psi_m(f_1) = \psi_m(f_2)$ then $f_1 \oplus h \simeq f_2 \oplus h$ for some $h \in [|\mathcal{L}^\wedge_p, BU(n)^\wedge_p]$ with $\psi_n(h) = N\text{reg}$ (some $N \geq 0$).

Here reg denotes the regular representation of S and \oplus is the Whitney sum. Note that we have strengthened the statement of (1) above compared to that given in [7, Theorem 5.3]; there it is claimed only that there exists some $M > 0$, but the argument given proves the stronger claim which we will require.

3.2. Chern classes of \mathcal{F}-stable representations. Write

$$\mathbb{F}_p[c_1, c_2, \ldots, c_n] = H^*(BU(n); \mathbb{F}_p) \cong \mathbb{F}_p[x_1, \ldots, x_n]^\Sigma_n,$$

where c_i has degree $2i$ and the isomorphism is given by sending c_i to the i'th symmetric polynomial. For any finite group P, a unitary representation $\rho : P \to U(n)$ induces a map $\hat{\rho} : BP \to BU(n)$ whose homotopy class depends on the equivalence class of $\hat{\rho}$. We thus obtain a map

$$\rho^* : H^*(BU(n); \mathbb{F}_p) \to H^*(BP; \mathbb{F}_p) = H^*(P; \mathbb{F}_p)$$

and so define the i'th Chern class of ρ to be $c_i(\rho) := \rho^*(c_i) \in H^{2i}(P; \mathbb{F}_p)$.

In particular, if $\rho \in \text{Rep}_n(\mathcal{F}) \subseteq \text{Rep}_n(S)$ then for each $1 \leq i \leq n$, we have $c_i(\rho) \in H^{2i}(S; \mathbb{F}_p)$. In fact, we have:

Proposition 3.3. For \mathcal{F} and ρ as above, $c_i(\rho) \in H^{2i}(\mathcal{F}; \mathbb{F}_p)$ for each $1 \leq i \leq n$.

Proof. By Proposition 2.4 we have

$$\rho = (\rho_P)_{P \in \mathcal{O}^c(\mathcal{F}^*)} \in \lim_{\mathcal{O}(\mathcal{F}^*)} \text{Rep}_n(P)$$
is given by an $O(F^c)$-compatible family of restriction maps. Moreover for each $P \in F^c$ there are commutative diagrams

$$
H^*(BU(n); \mathbb{F}_p) \xrightarrow{\rho|_P} H^*(P; \mathbb{F}_p) \xrightarrow{\rho^*} H^*(S; \mathbb{F}_p)
$$
and thus using Definition 3.1, we have $c_i(\rho) = c_i((\rho|_P))_{P \in \text{Ob}(F^c)} \in H^{2i}(F; \mathbb{F}_p)$. □

Thus for $\rho \in \text{Rep}_n(F)$, it makes sense to define the ith Chern class of ρ to be $c_i(\rho) \in H^*(F; \mathbb{F}_p)$. We may further define $c_i(\rho) = 1 + c_1(\rho) + \cdots + c_n(\rho)$ to be the total Chern class of ρ. This definition is extended to virtual representations by setting $c_i(-\rho) = \rho^*(c'_i)$ where $c'_i = 1 + c'_1 + c'_2 + \cdots$ is the unique power series in $\mathbb{F}_p[[c_1, \ldots, c_n]]$ satisfying $c'_1 c_i = 1$. In particular, for each i it follows that $c_i(-\rho)$ is expressible as a polynomial in the Chern classes $c_j(\rho)$ for $j \leq i$.

Definition 3.4. The Chern subring $\text{Ch}(F)$ of $H^*(F; \mathbb{F}_p)$ is the subring generated by the $c_i(\rho)$ for all i and virtual representations ρ, or equivalently for all representations ρ.

There is an alternative definition of the Chern subring using the classifying space for the linking system, which we will temporarily denote by $\text{Ch}'(F)$. The mod-p cohomology of $BU(n)^\wedge_p$ is of course a polynomial ring $\mathbb{F}_p[c_1, \ldots, c_n]$, and $\text{Ch}'(F)$ is defined to be the subring of $H^*(\mathcal{L}_p^\wedge; \mathbb{F}_p)$ generated by the images in cohomology of all maps $f : |\mathcal{L}_p^\wedge| \to BU(n)^\wedge_p$ for all $n \geq 1$.

Proposition 3.5. We have, $\text{Ch}'(F) = \text{Ch}(F)$.

Proof. Clearly $\text{Ch}'(F) \subseteq \text{Ch}(F)$, so it remains to establish the opposite inclusion. For a group G the containment $\text{Ch}'(G) \subseteq \text{Ch}(G)$ is immediate, because every map $BG \to BU(n)$ is induced by a group homomorphism, but the analogous statement for fusion systems is not known. Instead, we show that given any $\theta \in \text{Rep}_n(F)$, there exists $N \geq n$ and $f \in [\mathcal{L}_p^\wedge, BU(N)^\wedge_p]$ so that for each $i \leq n$, $c_i(f) = c_i(\theta)$.

For any m and any $\rho \in \text{Rep}_m(F)$, note that $c_i(\rho^m) = (c_i(\rho))^m$, and so inductively one sees that $c_i(p^k \rho)$ can only be non-zero when p^k divides i. Now, let ρ denote the regular representation of S, and pick $p^k > n$ sufficiently large so that $\theta \oplus p^k \rho$ is realized by a map $|\mathcal{L}_p^\wedge| \to BU(N)^\wedge_p$, where $N = n + p^k|S|$. Each Chern class of $\theta \oplus p^k \rho$ is contained in $\text{Ch}'(F)$, and for $i \leq n$, $c_i(\theta \oplus p^k \rho) = c_i(\theta)$. □

Note that $\text{Ch}(F)$ is finitely generated by [9, Proposition 2.1].

4. Varieties and Quillen stratification

4.1. The Green-Leary category of elementary abelian subgroups. Following [9, Section 6], to a subring R of the cohomology ring of a finite group can be associated a certain diagram $\mathcal{C}(R)$ of elementary abelian subgroups, and this is used to recover the ideal spectrum of R under mild conditions.
Definition 4.1. Let S be a finite group and R be a subring of $H^*(S;\mathbb{F}_p)$. Let $C = C(R)$ be the category whose objects are the elementary abelian subgroups of S where $f \in \text{Hom}_C(E_1, E_2)$ if and only if the corresponding diagram

\[
\begin{array}{ccc}
R & \xymatrix{R \ar[d]^{	ext{res}} & } \\
h^*(E_1;\mathbb{F}_p) & h^*(E_2;\mathbb{F}_p) \ar[l]_{f^*} & \end{array}
\]

commutes.

As in [9, Section 6], we also define:

Definition 4.2. Let S be a finite group and R be a subring of $H^*(S;\mathbb{F}_p)$.

1. R is **large** if it contains the Chern classes of the regular representation of S;
2. R is **natural** if it is generated by homogeneous elements and closed under the action of the Steenrod algebra.

We remark that the definition of large given above is a simplification of the one used in [9]. In the case when S is not finite (e.g., S a compact Lie group or a p-toral group), a large subring is one that contains the Chern classes of a virtual representation of non-zero degree whose restriction to every elementary abelian p-subgroup of S is regular.

In [9, Theorem 6.1] the authors prove:

Theorem 4.3. Let S be a finite group and R be a subring of $H^*(S;\mathbb{F}_p)$. If R is large and natural then the map

\[
\colim_{C(R)} X_E(k) \to V_R(k)
\]

is a homeomorphism.

Note that if $R = H^*(S;\mathbb{F}_p)$ then Theorem 4.3 is due to Quillen [12]. One tool for describing $C(R)$ is the following result, also from [9], which we restate here for convenience:

Lemma 4.4. Let S be a finite group, let A be an additive subgroup of $R(S)$ containing the regular representation and let $R = R_A$ be the subring of $H^*(S)$ generated by Chern classes of elements of A. Then R is large and natural. Furthermore $f : E_1 \to E_2$ is a morphism in $C(R)$ if and only if for all $e \in E_1$ and all characters χ of elements of A, $\chi(e) = \chi(f(e))$.

For example, if R is the subring generated by the Chern class of the regular representation then R is large and natural, and $C(R)$ is the category of all injective maps between elementary abelian subgroups by [9, Lemma 6.2].

4.2. Quillen stratification for fusion systems

Now let S be a finite p-group and \mathcal{F} be a saturated fusion system on S. We first apply Theorem 4.3 to reinterpret Linckelmann’s description of the spectrum of the cohomology ring of a fusion system. Recall that a subgroup $P \leq S$ is said to be \mathcal{F}-subconjugate to $Q \leq S$ if some \mathcal{F}-conjugate of P is contained in Q.
Proposition 4.5. Let \mathcal{F} be a saturated fusion system on S and E be an elementary abelian subgroup of S. Let σ_E be a homogeneous element in $h^*(E; \mathbb{F}_p)$ satisfying

$$\text{res}^E_S(\sigma_E) = 0$$

for each $F < E$.

Then,

1. for any $\eta \in h^*(E; \mathbb{F}_p)^{\text{Aut}_F(E)}$, there is $\eta' \in H^*(\mathcal{F}; \mathbb{F}_p)$ such that $r_E(\eta') = (\sigma_E \cdot \eta)^p$; and

2. there exists $\rho_E \in h^*(\mathcal{F}; \mathbb{F}_p)$ such that $r_E(\rho_E) = (\sigma_E)^p$ and $r_F(\rho_E) = 0$ for all subgroups F to which E is not \mathcal{F}-subconjugate.

Proof. See [11, Proposition 6].

Following [11], let $X_{\mathcal{F}}(k) = V_{h^*(\mathcal{F}; \mathbb{F}_p)}(k)$ denote the maximal ideal spectrum of $H^*(\mathcal{F}; \mathbb{F}_p)$ and, for a subgroup $Q \leq S$, set $X_{\mathcal{F}, Q}(k) := r_Q^* (X_Q(k))$ where r_Q^* is the map

$$\text{res}_Q^S : H^*(S; \mathbb{F}_p) \to H^*(Q; \mathbb{F}_p)$$

restricted to $H^*(\mathcal{F}; \mathbb{F}_p)$. Finally set

$$X_{\mathcal{F}}^+(k) := X_Q(k) \bigcup_{R<Q} (\text{res}_R^Q)^* (X_R(k)),$$

and $X_{\mathcal{F}, Q}(k)^+ = r_Q^* (X_Q^+(k))$.

The existence of an element σ_E satisfying the conditions in Proposition 4.5 is shown in [4, Section 5.6] in the discussion which precedes [4, Lemma 5.6.2] and from this Linckelmann deduces in [11, Theorem 1(i)] that

$$X_{\mathcal{F}}(k) = \bigcup_E X_{\mathcal{F}, E}(k) = \prod_E X_{\mathcal{F}, E}(k),$$

is a union of locally closed subvarieties, where E runs through a set of \mathcal{F}-isomorphism class representatives of elementary abelian subgroups of S. Equivalently, (c.f. [4, Corollary 5.6.4]) we have the following result:

Theorem 4.6. The natural map

$$\colim_{E(\mathcal{F})} X_E(k) \to X_{\mathcal{F}}(k)$$

is an inseparable isogeny.

In particular, we have:

Proposition 4.7. Suppose $R = H^*(\mathcal{F}; \mathbb{F}_p) \subseteq H^*(S; \mathbb{F}_p)$. Then,

1. R is large and natural;
2. $C(R)$ is exactly $\mathcal{E}(\mathcal{F})$.

Proof. (1) follows from Lemma 4.4 since the regular representation of S is \mathcal{F}-stable (e.g., because the restriction to any subgroup $P \geq S$ is a direct sum of $[S : P]$ copies of the regular representation of P). More specifically, naturality follows because the action of the Steenrod algebra on the cohomology of each pair of subgroups $P, Q \leq S$ commutes with the maps induced by any homomorphism $\phi : P \to Q$ in \mathcal{F}. A consequence of the argument in [11] which proves Theorem 4.6 is that the morphisms $\varphi \in \text{Hom}_\mathcal{F}(E_1, E_2)$ are exactly those for which the diagram (4.1) commutes when $P = S$ and $R = H^*(\mathcal{F}; \mathbb{F}_p)$. Thus (2) follows from Theorem 4.3 since R is large and natural by (1).
5. Chern classes of \(F \)-stable representations

We now apply Theorem 4.3 to describe the spectra of the subrings of \(H^*(F) \) determined by various classes of \(F \)-stable representations of \(S \), starting with the collection of all \(F \)-stable representations.

Proposition 5.1. If \(R = \text{Ch}(F) \subseteq H^*(F; \mathbb{F}_p) \) then \(C(R) = \mathcal{E}'(F) \).

Proof. Since \(A = R(F) \subseteq R(S) \) is an additive subgroup of the representation ring of \(S \) generated by genuine representations, and containing the regular representation, and since \(\text{Ch}(F) \) is exactly the subring of \(H^*(F; \mathbb{F}_p) \) generated by Chern classes of elements of \(A \), we have by Lemma 4.4 that:

1. \(R \) is large and natural;
2. \(f \in \text{Mor}_{C(R)}(E_1, E_2) \) if and only if for all \(e \in E_1 \) and all characters \(\chi \) of elements of \(A \), \(\chi(e) = \chi(f(e)) \).

Hence \(C(R) = \mathcal{E}'(F) \) by Corollary 2.6 and so

\[
\text{colim}_{\mathcal{E}'(F)} X_E(k) \rightarrow V_{\text{Ch}(F)}(k)
\]

is a homeomorphism by Theorem 4.3. \(\square \)

5.1. Real representations.

The real Chern subring \(\text{Ch}_R(F) \) is defined to be the subring of \(H^*(S) \) generated by Chern classes of real \(F \)-stable representations of \(S \). There are other possible definitions for \(\text{Ch}_R(F) \), such as the (possibly larger) ring containing the Chern classes of all complex representations whose characters are real, which we shall temporarily denote by \(\text{Ch}'_R(F) \), and the (possibly smaller) ring generated by the images of those maps \(f: |\mathcal{L}|_p \rightarrow BU(n)_p \) that factor through the map \(BO(n)_p \rightarrow BU(n)_p \) for some \(n \), which we temporarily denote by \(\text{Ch}''_R(F) \). We first show that all these choices lead to homeomorphic varieties:

Proposition 5.2. The inclusions \(\text{Ch}'_R(F) \rightarrow \text{Ch}_R(F) \rightarrow \text{Ch}''_R(F) \) induce homeomorphisms

\[
V_{\text{Ch}'_R(F)}(k) \rightarrow V_{\text{Ch}_R(F)}(k) \rightarrow V_{\text{Ch}''_R(F)}(k)
\]

of the associated varieties.

Proof. There are inclusions \(U(n) \rightarrow SO(2n) \rightarrow U(2n) \). If \(M \) has trace \(\lambda \), then the image of \(M \) under this composite has trace \(\lambda + \bar{\lambda} \). Thus if \(\rho \) is any complex representation with real character, then \(2\rho \) is a real representation. The total Chern characters are related by \(c.(2\rho) = c.(\rho)^2 \). In the case when \(p \neq 2 \), it follows that each \(c_i(\rho) \) is in the subring generated by the Chern classes of \(2\rho \), and so for \(p \neq 2 \), \(\text{Ch}''_R(F) = \text{Ch}_R(F) \). In the case when \(p = 2 \), \(c_2(\rho) = c_1(\rho)^2 \), and since elements of the algebraically closed field \(k \) of characteristic two have unique square roots, any ring homomorphism from \(\text{Ch}_R(F) \) to \(k \) extends uniquely to one from \(\text{Ch}''_R(F) \) to \(k \).

Let \(\rho: S \rightarrow O(n) \) be a real representation of \(S \) that is \(F \)-stable. The regular representation of \(S \) is of course a real representation, and so by the argument used in Proposition 3.5 there exists large \(N \) and \(f: |\mathcal{L}|_p \rightarrow BU(N)_p \) so that for \(i \leq n \), \(c_i(f) = c_i(\rho) \). The composite of \(f \) with the inclusion map \(i: BU(N)_p \rightarrow BSO(2N)_p \) has \(c_i(i \circ f) = (c_i(f))^2 \), and so by the argument used in the previous paragraph a ring homomorphism from \(\text{Ch}_R(F) \) to the
algebraically closed field k of characteristic $p > 0$ extends uniquely to a homomorphism from $\text{Ch}_k(F)$ to k.

We now obtain, just as in [9], a description of the variety of $\text{Ch}_k(F)$.

Proposition 5.3. If $R = \text{Ch}_k(F) \subseteq H^*(F; \mathbb{F}_p)$, then $C(R) = \mathcal{E}_p^F(F)$.

Proof. The regular real representation of S is F-stable, and so $\text{Ch}_k(F)$ is a large subring of $H^*(S)$. Moreover, it is easily seen to be natural and so Theorem 4.3 may be applied. If χ is a real character, then for any $g \in S$ $\chi(g) = \chi(g^{-1})$. Hence $\mathcal{E}_p^F(F)$ contained in $C(R)$. By the argument given in [9, Prop. 7.1 and Prop. 7.2] to establish the reverse inclusion it suffices to show that characters of real F-stable representations of separate the conjugacy classes of pairs $\{g, g^{-1}\}$. Let g, h be elements of S and suppose that h is not F-conjugate to either g or to g^{-1}. We need to construct a real F-stable character which takes different values on g and h. By Corollary 2.6 there is a F-stable character χ with $\chi(h) \neq \chi(g)$ and $\chi(h) \neq \chi(g^{-1})\chi(g)$. Now both the sum $\chi + \chi$ and the product $\chi \chi$ are F-stable real characters, and we claim that at least one of these two characters will take different values on g and h. If this is not the case then writing $\alpha = \chi(g)$ and $\beta = \chi(h)$, we have

$$\beta \bar{\beta} = \alpha \bar{\alpha}$$

and

$$\beta + \bar{\beta} = \alpha + \bar{\alpha}$$

Hence $\{\chi(h), \bar{\chi}(h)\} = \{\chi(g), \bar{\chi}(g)\}$ is the solution set for the equation

$$x^2 - (\alpha + \bar{\alpha})x + \alpha \bar{\alpha} = x^2 - (\beta + \bar{\beta})x + \beta \bar{\beta},$$

which contradicts $\chi(h) \notin \{\chi(g), \bar{\chi}(g)\}$. \hfill \square

5.2. Permutation representations. For a saturated fusion system F on a p-group S, define the **linear permutation Chern subring** $\text{Ch}_p(F)$ to be the subring of $H^*(S)$ generated by the Chern classes of all F-stable linear permutation representations. Define also the **permutation Chern subring** $\text{Ch}'_p(F)$ to be the subring of $H^*(S)$ generated by the linearizations of all F-stable permutation representations. From the definitions, $\text{Ch}'_p(F) \subseteq \text{Ch}_p(F)$. One consequence of the next result is that this inclusion induces a homeomorphism of varieties.

Proposition 5.4. If $R = \text{Ch}_p(F)$ and $R' = \text{Ch}'_p(F)$, then $C(R) = C(R') = \mathcal{E}_p^F(F)$.

Proof. Since $R' \subseteq R$, $C(R') \subseteq C(R')$. Suppose $f : E_1 \to E_2$ is a morphism in $C(R')$ and let $e \in E_1$. By Lemma 4.4, $\chi(e) = \chi(f(e))$ for all permutation characters χ of F-stable S-sets. It suffices to show that this is equivalent to $\langle e \rangle$ and $\langle f(e) \rangle$ being F-conjugate subgroups of S.

If $\langle e \rangle$ and $\langle f(e) \rangle$ are F-conjugate then $f(e)$ and e' are F-conjugate for some $i \geq 1$ and $\chi(f(e)) = \chi(e') = \chi(e)$ for all permutation characters χ of F-stable S-sets.

Now suppose that $\langle e \rangle$ and $\langle f(e) \rangle$ are not F-conjugate, and let $\langle e' \rangle$ be a fully F-normalised F-conjugate of $\langle e \rangle$. It suffices to show that $f \notin C(R)$. Let χ be the permutation character associated to the F-stable S-set $\alpha_{\langle e \rangle}$ in Proposition 2.8. Since $\langle f(e) \rangle$ and $\langle e \rangle$ are not F-conjugate, we have that $\Phi_{\langle f(e) \rangle}(\alpha_{\langle e \rangle}) = 0$ by Proposition 2.8(1). On the other hand,

$$\Phi_{\langle e' \rangle}(\alpha_{\langle e \rangle}) = |N_S(\langle e' \rangle)/\langle e' \rangle| \neq 0$$

by Proposition 2.8(2). If $i \geq 1$ is such that e^n is F-conjugate to e then since χ is F-stable,
0 \neq |\text{Fix}_{\alpha(e)}(e^n)| = \chi(e^n) = \chi(e) = \chi(f(e)) = |\text{Fix}_{\alpha(e)}(f(e))|.

Since \langle f(e) \rangle is cyclic of order \(p \) this implies that \(\Phi_{\langle f(e) \rangle}(\alpha(e)) \neq 0 \), a contradiction. \qed

Proof of Theorem 1.1. This follows on combining Propositions 5.1, 5.3 and 5.4. \qed

6. Characteristic classes of \(F \)-stable permutations

In this section, \(F \) is a saturated fusion system on a finite \(p \)-group \(S \). We adapt the discussion in [10] to the setting of fusion systems.

Lemma 6.1. Let \(X \) be an \(F \)-stable \(S \)-set and \(\rho_X : S \to \Sigma_n \) be an associated homomorphism. Then the induced map

\[\rho_X^* : H^*(\Sigma_n) \to H^*(S) \]

depends only on \(X \) and has image contained in \(H^*(F) \).

Proof. Since the images of two choices of \(\rho_X \) differ only by an inner automorphism of \(\Sigma_n \), \(\rho_X^* \) depends only on \(X \). Denote by \(A_n(P) \) the set of isomorphism classes of \(P \)-sets of order \(n \) for a finite group \(P \), and by \(A_n(F) \) the set of isomorphism classes of \(F \)-stable \(S \)-sets of order \(n \). Then arguing exactly as in Proposition 2.4, we have a bijection

\[\lim_{\mathcal{O}(F^c)} A_n(P) \cong A_n(F). \]

Now the argument in Proposition 3.3 with \(U(n) \) replaced by \(\Sigma_n \) yields the result. \qed

Definition 6.2. Let \(S(F) \) be the permutation subring of \(H^*(S) \) generated by \(\text{im}(\rho_X^*) \) for all \(F \)-stable \(S \)-sets.

We have not been able to establish an analogue of Proposition 3.5 for the ring \(S(F) \), even up to \(F \)-isomorphism, but we conjecture that one exists. More precisely:

Conjecture 6.3. Let \(S'(F) \) be the subring of \(H^*|L| \wedge_p \rightarrow B(\Sigma_n)^p \) for all \(n \geq 1 \). Then the inclusion \(S'(F) \subseteq S(F) \) induces a homeomorphism of varieties.

One difficulty with establishing this conjecture is that an \(F \)-stable \(S \)-set does not necessarily give rise to a map of \(p \)-completed classifying spaces, even after stabilizing along the lines of [7, Theorem 5.3]. See the PhD thesis of Matthew Gelvin [8] for a discussion of this.

Recall the definition of the category \(\mathcal{A}(F) \) in Section 1 which is analogous to the set \(\mathcal{A}_h \) in [10, Section 3] by [10, Lemma 3.2]. We apply Proposition 2.8 to prove the following analogue of [10, Lemma 2.7] for fusion systems:

Lemma 6.4. Let \(E_1, E_2 \leq S \) and \(f : E_1 \to E_2 \) be an injective group homomorphism. Then \(f \in \mathcal{A} \) if and only if for every \(x \in S(F) \), the class \(\text{res}_{E_1}^S(x) - f^*\text{res}_{E_2}^S(x) \) lies in the nilradical of \(H^*(E_1) \).
Proof. Suppose \(f \in A \). Then \(E_1 \) and \(f(E_1) \) are \(\mathcal{F} \)-conjugate, so that by Proposition 2.8, the \(\mathcal{F} \)-stable \(S \)-sets \(\alpha_{E_1} \) and \(\alpha_{f(E_1)} \) are isomorphic. Denoting (respectively) by \(\rho_1 \) and \(\rho_2 \) the corresponding \(S \)-representations, we have \(\rho_1|_{E_1} \cong \rho_2|_{f(E_1)} \circ f \) and so there exists some \(\sigma \in \Sigma_{|S|} \) such that the diagram

\[
\begin{array}{ccc}
E_1 & \xrightarrow{f} & f(E_1) \\
\downarrow{\rho_1|_{E_1}} & & \downarrow{\rho_2|_{f(E_1)}} \\
\Sigma_{|S|} & \xrightarrow{\sigma} & \Sigma_{|S|}
\end{array}
\]

(6.1)

commutes. Hence \(\text{res}_{E_1}^S - f^* \text{res}_{E_2}^S \) kills \(\text{im}(\rho_1^*) \).

Conversely, suppose that \(f \notin A \). Then there exists \(U \leq E_1 \) such that \(U \) is not \(\mathcal{F} \)-conjugate to \(f(U) \). If \(U \) is not fully \(\mathcal{F} \)-normalised, then let \(\varphi \in \text{Hom}_F(U, S) \) be such that \(\varphi(U) \) is fully \(\mathcal{F} \)-normalised. Then, since \(\mathcal{F} \) is saturated, there exists \(\tilde{\varphi} \in \text{Hom}_F(N_{\varphi}, S) \) which extends \(\varphi \). Since \(E_1 \leq C_S(U) \leq N_{\varphi} \) we obtain a map

\[
f' := f \circ (\tilde{\varphi}|_{E_1})^{-1} \in \text{Hom}(\varphi(E_1), E_2).
\]

Plainly \(f' \notin A \) since \(f \notin A \), so replacing \(f \) by \(f' \) and \(U \) by \(\varphi(U) \) if necessary, we may assume that \(U \) is fully \(\mathcal{F} \)-normalised. Then by Proposition 2.8, \(\Phi_U(\alpha_f(U)) = 0 \neq \Phi_U(\alpha_U) \) so that \(\alpha_U \) and \(\alpha_{f(U)} \) are not isomorphic as \(S \)-sets. Denoting (respectively) by \(\rho_1 \) and \(\rho_2 \) the corresponding \(S \)-representations, we have that \(\rho_1|_{E_1} \) is not isomorphic to \(\rho_2|_{f(E_1)} \circ f \) since \(U \leq E_1 \). Thus there can be no element \(\sigma \in \Sigma_{|S|} \) which conjugates \(\rho_1(E_1) \) to \(\rho_2(E_2) \).

Now, by applying the results in [9, Section 9] to \(\Sigma_{|S|} \), we obtain a class \(\zeta \in H^*(\Sigma_{|S|}) \) such that

\[
\text{res}_{E_1}^S(\zeta) - f^*\text{res}_{E_2}^S(\zeta)
\]

is not nilpotent. Pulling \(\zeta \) back to \(H^*(S) \) yields the desired class. \(\square \)

We now obtain.

Theorem 6.5. The restriction maps in cohomology induce a natural homeomorphism

\[
\colim_{\mathcal{A}(\mathcal{F})} X_E(k) \to V_{S(\mathcal{F})}(k).
\]

Proof. The regular representation \(\rho : S \to \Sigma_{|S|} \) is obviously \(\mathcal{F} \)-stable so \(S(\mathcal{F}) \) is large. It is also natural because \(S(\mathcal{F}) \) is clearly homogeneously generated and closed under the action of the Steenrod algebra. Hence by Theorem 4.3, there exists some category \(\mathcal{C} \) of elementary abelian \(p \)-subgroups for which

\[
\colim_{\mathcal{C}} X_E(k) \to V_{S(\mathcal{F})}(k).
\]

Now, Lemma 6.4 identifies \(\mathcal{C} \) with the category \(\mathcal{A}(\mathcal{F}) \) defined above. \(\square \)

References

