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In previous work [18], we studied rational generating functions (“ask zeta func-
tions”) associated with graphs and hypergraphs. These functions encode average
sizes of kernels of generic matrices with support constraints determined by the graph
or hypergraph in question, with applications to the enumeration of linear orbits and
conjugacy classes of unipotent groups.

In the present article, we turn to the effect of a natural graph-theoretic operation
on associated ask zeta functions. Specifically, we show that two instances of rational
functions, W −

Γ (X, T ) and W ♯
Γ(X, T ), associated with a graph Γ are both well-behaved

under taking joins of graphs. In the former case, this has applications to zeta functions
enumerating conjugacy classes associated with so-called graphical groups.

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background on ask zeta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 (Hyper)graphs and their ask zeta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Selectors of hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Towards minors: paths and cycles in hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Animations of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 The Reflexive Graph Modelling Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8 Nilpotent animations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9 Animations of joins of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10 Adding generic rows (or columns) to matrices of linear forms . . . . . . . . . . . . . . . . . . . . . . . . 45
11 Proof of Theorem A (and a new proof of Theorem 1.15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12 Fundamental properties of W ♯

Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1 Introduction
Ask zeta functions encode average kernel sizes within families of linear maps over finite
quotients of infinite rings. Matrices of linear forms lead, via specialisation of variables,
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1 Introduction

to associated ask zeta functions. Such zeta functions first arose by linearising the
enumeration of linear orbits and conjugacy classes of groups. Their rich algebraic and
combinatorial structure established them as objects of independent interest.

Combinatorial incidence structures such as graphs and hypergraphs lead to matrices of
linear forms by “linearising” their adjacency and incidence matrices. In [18], we initiated
the study of such (hyper)graphical ask zeta functions over compact discrete valuation
rings. In particular, for each graph Γ, we showed that there exist rational generating
functions W +

Γ (X, T ) and W−
Γ (X, T ) that capture average kernel sizes associated with the

symmetric and antisymmetric linearised adjacency matrix of Γ, respectively.
In the present paper, we develop new tools for studying the functions W±

Γ , allowing
us to contribute to two contemporary research themes in the area: rigidity of zeta
functions and effects of operations on zeta functions. Rigidity is an umbrella term for the
phenomenon that certain algebraic or combinatorial operations on matrices of linear forms
leave associated ask zeta functions unchanged. Here we show specifically that for reflexive
graphs Γ, three a priori quite different ask zeta functions W +

Γ , W−
Γ , and WAdj(Γ) all

coincide. The effects of natural— and seemingly innocuous—operations on zeta functions
associated with algebraic structures are generally mysterious and poorly understand.
We show that Γ{W−

Γ is well-behaved under joins for all loopless graphs (answering a
question from [18]) and that Γ{W +

Γ is well-behaved under joins for arbitrary reflexive
graphs: in both cases we give concise formulae for the zeta functions of the joins in terms
of the zeta functions of the graphs being joined, vastly generalising results from [18]. Our
results have applications to class-counting zeta functions of so-called graphical groups.

1.1 Ask zeta functions derived from matrices of linear forms
We briefly recall selected concepts and results pertaining to ask zeta functions. For
further details and references, see §2.

From matrices of linear forms to ask zeta functions. Let O be a compact discrete
valuation ring (DVR) with maximal ideal P. Examples include the ring Zp of p-adic
integers for a prime p and the ring Fq[[z]] of formal power series over a finite field Fq. Let
A = A(X1, . . . , Xℓ) ∈ Md×e(O[X1, . . . , Xℓ]) be a matrix of linear forms. The (algebraic)
ask zeta function of A over O is the formal power series Zask

A/O(T ) = ∑∞
k=0 αkT

k ∈ Q[[T ]]
defined as follows. Given k ⩾ 0, by specialising variables, each x ∈ (O/Pk)ℓ gives rise to
a module homomorphism A(x): (O/Pk)n → (O/Pk)m (acting by right multiplication on
rows). The coefficient αk ∈ Q is the average size of the kernel among the maps A(x) as x
ranges over (O/Pk)ℓ. If O has characteristic zero, then Zask

A/O(T ) ∈ Q(T ) by [13, Thm 1.4].
Ask zeta functions were introduced in [13] as linearisations of zeta functions enumerating
linear orbits and conjugacy classes of suitable groups.

Global templates for ask zeta functions and arithmetic questions. Given a matrix of
linear forms A over Z, we may consider the ask zeta function Zask

A/O(T ) for each compact
DVR O. It is then natural to ask how these ask zeta functions vary with O. Let q be the
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1 Introduction

size of the residue field of O. Excluding finitely many exceptional residue characteristics,
general machinery from p-adic integration [13, Thm 4.11–4.12] provides a “Denef formula”
for Zask

A/O(T ) in terms of rational functions in q and T and the numbers of rational points
of certain schemes over Z over the residue field of O. The presence of numbers of rational
points on schemes turns out to be unavoidable in a precise sense, see [17]. In general,
one can therefore expect the study of ask zeta functions Zask

A/O(T ) for a fixed Z-defined A
and varying O to involve difficult arithmetic problems.

1.2 Matrices of linear forms from graphs and hypergraphs
Two types of matrices of linear forms are of particular interest in the present paper.

Matrices of linear forms from hypergraphs. By a hypergraph, we mean a triple
H = (V, E, ı) where V and E are finite sets of vertices and hyperedges, respectively,
and ı ⊂ V × E is the incidence relation of H. Hypergraphs are also referred to as
incidence structures in the literature. The relation ı can be equivalently described by
the support function ∥·∥ = ∥·∥H: E → 2V given by ∥e∥ = {v ∈ V : v ı e} as in [18].

Let H = (V, E, ı) be a hypergraph with distinct vertices v1, . . . , vn and distinct hy-
peredges e1, . . . , em. Up to isomorphism (suitably defined, see §3.1), H is completely
determined by the n × m incidence matrix whose (i, j)-entry is 1 if vi ı ej and 0
otherwise. Let AH = [Xij ] be the n×m matrix of linear forms over Z such that Xij = 0
if and only if vi ̸ ı ej and such that the nonzero Xij are algebraically independent over Z.
The matrix AH is well-defined up to suitable equivalence, see §2. Note that AH(1, . . . , 1)
is the incidence matrix of H as defined above.

Example 1.1. Consider the hypergraph H with vertices v1, . . . , v4, hyperedges e1, . . . , e4,
and associated incidence matrix 

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 .

Hence, ∥e1∥ = {v1, v2}, ∥e2∥ = {v1, v2, v3}, ∥e3∥ = {v2, v3, v4}, ∥e4∥ = {v3, v4}, and

AH =


X11 X12 0 0
X21 X22 X23 0

0 X32 X33 X34
0 0 X43 X44

 .

Matrices of linear forms from graphs. Let Γ be a graph with distinct vertices v1, . . . , vn
and adjacency relation ∼. In this article, unless otherwise indicated, graphs are allowed
to contain loops (i.e. vi ∼ vi is possible) but no parallel edges. Let Γ have m edges. We
define matrices of linear forms A+

Γ and A−Γ over Z defined as follows. Let Xij denote the
(i, j)-entry of A±Γ . We impose the following conditions:
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• Xij = 0 if and only if vi ̸∼ vj ,

• Xji = ±Xij whenever i ̸= j, and

• The nonzero Xij with i ⩽ j are algebraically independent over Z.

Example 1.2. For the graph Γ given by

v1 v2 v3 v4

we obtain

A±Γ =


X11 X12 0 0
±X12 X22 X23 0

0 ±X23 X33 X34
0 0 ±X34 X44

 .

As in the case of hypergraphs, the matrix A±Γ does not merely depend on Γ but also
on our choice of a total order on its vertices. Again, different choices yield equivalent
matrices of linear forms (see §2). The matrix A+

Γ (1, . . . , 1) is the usual adjacency matrix
of Γ relative to the given order of the vertices.

1.3 Background: the Uniformity Theorem
Belkale and Brosnan [1] showed that counting Fq-rational points on the degeneracy loci of
the matrices A+

Γ is, in a precise sense, as hard as counting Fq-rational points on arbitrary
schemes. Average sizes of kernels are expressible in terms of the numbers of matrices of
given rank (see [13, §2.1]). This notwithstanding, the following result shows that at least
for the matrices AH and A±Γ , such hard geometric problems average out when passing to
ask zeta functions.

Theorem 1.3 (Uniformity Theorem [18, Thm A]).

(i) Let H be a hypergraph. Then there exists WH(X, T ) ∈ Q(X, T ) such that for each
compact DVR O with residue field size q, we have Zask

AH/O
(T ) = WH(q, T ).

(ii) Let Γ be a graph. Then there exists W +
Γ (X, T ) ∈ Q(X, T ) such that for each

compact DVR O with odd residue field size q, we have Zask
A+

Γ /O
(T ) = W +

Γ (q, T ).

(iii) Let Γ be a graph. Then there exists W−
Γ (X, T ) ∈ Q(X, T ) such that for each compact

DVR O with (arbitrary) residue field size q, we have Zask
A−

Γ /O
(T ) = W−

Γ (q, T ).

Remark 1.4.

(i) In [18], Theorem 1.3(iii) was only spelled out in case Γ is loopless. However, in
[18, §6], both parts (ii) and (iii) of Theorem 1.3 were proved simultaneously and,
in particular, the proof via [18, Thm 6.4(iii)] also applies when Γ has a loop.
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1 Introduction

(ii) The first author’s package Zeta [16] for SageMath [19] implements algorithms for
computing W±

Γ and WH. These algorithms are practical for small (hyper)graphs,
say on at most 7 vertices.

(iii) The present article provides us with a new and self-contained proof of Theorem 1.3;
see §4 and §6.5.

The present article contributes to our understanding of the operation Γ { W−
Γ . In

particular, we will see that for two very natural classes of graphs, namely loopless and
reflexive ones, taking joins has a remarkably tame algebraic effect on W−

Γ .

1.4 Result: joins of loopless graphs
Let Γ1 and Γ2 be graphs and let Γ1 ⊕ Γ2 denote their disjoint union. The join Γ1 ∨ Γ2 of
Γ1 and Γ2 is obtained from Γ1⊕ Γ2 by adding edges connecting each vertex of Γ1 to each
vertex of Γ2. Note that a join of loopless graphs is again loopless.

Theorem A (Loopless joins). Let Γ1 and Γ2 be loopless graphs on n1 and n2 vertices,
respectively. Write zi = X−ni. Then

W −
Γ1∨Γ2

(X, T )

=
z1z2XT−1 + W −

Γ1
(X,z2T )(1−z2T )(1−z2XT ) + W −

Γ2
(X,z1T )(1−z1T )(1−z1XT )

(1− T )(1−XT ) . (1.1)

Remark 1.5 (Precursors to Theorem A).

(i) In the special case that Γ1 and Γ2 are cographs, i.e. loopless graphs which do
not contain a path on four vertices as induced subgraphs, Theorem A was first
proved in [18, Prop. 8.4]. That proof relied on the Cograph Modelling Theorem
(Theorem 1.15 below) from [18]. Theorem A thus provides a positive answer to
[18, Question 10.1].
Removing the assumption that Γ1 and Γ2 be cographs constitutes a significant
extension of the scope of this result. For instance, it is well known that asymptoti-
cally, the number of (isomorphism classes of) loopless graphs on n vertices grows
like γn := 2(n

2)/n!; see [9, §9.1]. Ravelomanana and Thimonier [11, Thm 4] showed
that asymptotically, the number of (isomorphism classes of) cographs on n vertices
grows like βn := Cαn/n3/2, where C = 0.206 . . . and α = 3.560 . . . . In particular,
βn grows at most exponentially while γn grows super-exponentially as n→∞.

(ii) By [15, Prop. 8.5], equation (1.1) holds modulo T 2. Given a graph Γ, the coefficient
of T of W−

Γ (X, T ) encodes the average size of the kernel of the matrices A−Γ over
finite fields.

Remark 1.6.

(i) The conclusion of Theorem A does not generally hold unless Γ1 and Γ2 are both
loopless. Taking Γ1 to be an isolated vertex and Γ2 to be a loop at one vertex
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provides a counterexample. On the other hand, when Γ1 and Γ2 contain loops at
all vertices, then W−

Γ1∨Γ2
is again expressible in terms of W−

γ1 and W−
Γ2

albeit in
terms of a formula other than (1.1); see Proposition C.

(ii) Taking Γ1 to be a singleton and Γ2 to be a path on 2 vertices (so that Γ1 ∨ Γ2
is a triangle) shows that the conclusion of Theorem A does not carry over to
W +

Γ1∨Γ2
(X, T ). (See [18, Table 1].)

Enter W ♭
Γ: renormalising W−

Γ . Theorem A may be rephrased as follows. For a graph Γ
on n vertices, let W ♭

Γ = W ♭
Γ(X, T ) = W−

Γ (X, XnT ). Of course, W−
Γ and W ♭

Γ determine
one another for given n. While the coefficients of W−

Γ (X, T ) as a series in T encode
average sizes of kernels of specialisations of A−Γ (X) over finite quotients of DVRs, the
coefficients of W ♭

Γ(X, T ) count pairs (v, x) with vA−Γ (x) = 0 over such rings.
Let Γ1 and Γ2 be graphs on n1 and n2 vertices, respectively. If Γ1 and Γ2 are both

loopless, then Theorem A takes the following form:

W ♭
Γ1∨Γ2(X, T ) =
XT − 1 + W ♭

Γ1
· (1−Xn1T )(1−Xn1+1T ) + W ♭

Γ2
· (1−Xn2T )(1−Xn2+1T )

(1−Xn1+n2T )(1−Xn1+n2+1T ) . (1.2)

Join powers. Noting that taking joins of graphs is an associative operation (up to
isomorphism), let Γ∨k = Γ ∨ · · · ∨ Γ, with k copies of Γ. We let Γ∨0 denote the graph
without vertices, the identity element with respect to ∨. Theorem A provides us with
infinitely many explicit formulae for the functions W ♭

Γ (hence also W−
Γ ):

Corollary 1.7. Let Γ be a loopless graph on n vertices. Let k ⩾ 0. Then

W ♭
Γ∨k(X, T ) = (k − 1)(XT − 1) + kW ♭

Γ · (1−XnT )(1−Xn+1T )
(1−XknT )(1−Xkn+1T ) .

Proof. Induction on k using Γ∨(k+1) ≈ Γ ∨ Γ∨k and (1.2). ♦

Example 1.8. Let Γ be the following graph:

By [18, Thm 8.18] or [18, Table 1], we have W−
Γ = (1−X−1T )(1−X−2T )

(1−T )2(1−XT ) and thus W ♭
Γ =

W−
Γ (X, X4T ) = (1−X2T )(1−X3T )

(1−X4T )2(1−X5T ) . Using Corollary 1.7, we find that

W ♭
Γ∨k(X, T ) = X5T 2 + (k − 1)(X4T + XT )− k(X3T + X2T ) + 1

(1−X4T )(1−X4kT )(1−X4k+1T )
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and thus

W−
Γ∨k(X, T ) = W ♭

Γ(X, X−4kT )

= X5−8kT 2 + (k − 1)(X4−4kT + X1−4kT )− k(X3−4kT + X2−4kT ) + 1
(1−X4−4kT )(1− T )(1−XT ) .

1.5 Related work: disjoint unions and Hadamard products
Theorem A shows that one natural graph-theoretic operation, taking joins, has a trans-
parent effect on the rational functions W−

Γ attached to loopless graphs. There are of
course many other natural binary operations on (loopless) graphs that one may consider.
To our knowledge, only one of these has been investigated so far: disjoint unions.

Recall that given formal power series F (T ) = ∑∞
k=0 akT

k and G(T ) = ∑∞
k=0 bkT

k with
coefficients in a field k, their Hadamard product is F (T )∗T G(T ) = ∑∞

k=0 akbkT
k. It is

well known that if F (T ), G(T ) ∈ k(T ), then F (T ) ∗T G(T ) ∈ k(T ); see e.g. [2, Ch. 1]. It
is easy to see that for each graph Γ, we have W±

Γ1⊕Γ2
(X, T ) = W±

Γ1
(X, T ) ∗T W±

Γ2
(X, T );

cf. [18, §8.2]. Here, the Hadamard product is taken over k = Q(X). We note that
W ♭

Γ1⊕Γ2
= W ♭

Γ1
∗T W ♭

Γ2
follows easily; cf. [5, Lem. 5.9].

In general, explicitly expressing Hadamard products of rational generating functions as
(explicit sums of) rational functions appears to be difficult. A growing body of research
has provided algebro-combinatorial tools for studying Hadamard products of ask zeta
functions (in particular those associated with graphs), orbit-counting, and class-counting
zeta functions in fortunate cases, see [13, §2.3], [18, §5.2], and [6] (see also [5]). We record
some consequences of these results in §12.

1.6 Result: the Reflexive Graph Modelling Theorem
Let Γ be a graph with vertex set V and adjacency relation ∼ on V . Anticipating a
definition from §3.3, we write Adj(Γ) for the adjacency hypergraph (V, V,∼) of Γ.
Hence, Adj(Γ) is the hypergraph obtained by viewing an adjacency matrix of Γ as
incidence matrix of a hypergraph. Recall that Γ is reflexive if v ∼ v for each v ∈ V .
The following is our second main result.

Theorem B (Reflexive Graph Modelling Theorem). Let Γ be a reflexive graph. Then

W +
Γ = W−

Γ = WAdj(Γ).

Example 1.9. Let H be as in Example 1.1 and Γ be as in Example 1.2. Then Theorem B
shows that W±

Γ = WH. Using Zeta [16], we find this common rational function to be

1 + 2X−1T −X−2T 2 − 6X−2T + 6X−4T 2 + X−4T − 2X−5T 2 −X−6T 3

(1−X−1T )2(1− T )2 .

We offer three perspectives on Theorem B. The first portrays it as a new “modelling
theorem”, the second as a new rigidity result, and the third—developed in Section 1.7—
views it in the context of reflexive joins.
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A new modelling theorem. First, Theorem B is a new “modelling theorem” that belongs
to the same genre as the Cograph Modelling Theorem [18, Thm D] (Theorem 1.15 below).
Indeed, it asserts that for each graph Γ of a certain type (namely, each reflexive graph),
there exists a modelling hypergraph H = Adj(Γ) such that W±

Γ = WH. Such a result
allows us to leverage what is known about the rational functions WH; see §1.9 below.

Rigidity of ask zeta functions. Second, we may view Theorem B as a new instance of
rigidity phenomena that have been previously explored in the study of ask zeta functions.
The first such result is [13, Cor. 5.10]. It asserts that for any d > 1 and each compact
DVR O with residue field size q, the ask zeta functions associated with the generic d× d
matrix Ad and the generic traceless d× d matrix Td over O coincide; this common ask
zeta function is (1− q−dT )/(1− T )2. That is, imposing the linear relation trace(Ad) = 0
on the entries of Ad has no effect on associated ask zeta functions. This result was
significantly extended in [7, Thm A], which showed that imposing suitably admissible
systems of linear equations involving the entries of generic rectangular, symmetric, or
antisymmetric matrices has no effects on ask zeta functions.

Theorem B is a new result of this form. Indeed, given a reflexive graph Γ, the matrix
A±Γ = [aij ] is obtained from AAdj(Γ) by imposing the linear relations aij = ±aji for i ̸= j.
Crucially, these relations are not among those covered by [7, Thm A].

Viewing A±Γ as being obtained from AAdj(Γ) by imposing off-diagonal (anti)symmetry
relations, it is natural ask whether the same conclusion holds for more general classes of
matrices of linear forms. Indeed, even slight generalisations of the matrices AAdj(Γ) yield
examples for which natural analogues of the conclusions of Theorem B no longer hold.

Example 1.10. Consider the following matrices of linear forms:

A =

U1 X 0
X U2 X
0 X U3

 , B =

U1 X 0
Y U2 X
0 Y U3

 , C =

U1 X 0
Y U2 X
0 Z U3

 .

Using Zeta [16], we find that for almost all residue characteristics of O, the zeta
functions Zask

A/O, Zask
B/O, and Zask

C/O are all distinct. They also all differ from Zask
A±

Γ /O
, where Γ

is the “looped path”

.

Using the notation from the next subsection, a formula for the latter zeta function is
recorded in Table 2 in the row corresponding to the (simple) path on three vertices.

1.7 A new graph invariant (W ♯
Γ) and reflexive joins

Given a graph Γ, let Γ̂ denote its reflexive closure, obtained by adding all missing loops.
For our third perspective on Theorem B, observe that Γ 7→ Γ̂ yields a bijection between
loopless and reflexive graphs. Theorem B therefore suggests the study of the following
rational functions attached to loopless graphs.

8
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Definition 1.11. For a graph Γ, let W ♯
Γ(X, T ) denote the common value of

W +
Γ̂ (X, T ) = W−

Γ̂ (X, T ) = W
Adj(Γ̂)(X, T ).

For a list of all W ♯
Γ as Γ ranges over graphs on at most four vertices, see Table 2.

The W ♯
Γ appear to be remarkably well-behaved. In particular, using Theorem B and

results from [18], we obtain the following reflexive counterpart of Theorem A.
Proposition C (Reflexive joins and disjoint unions). Let Γ1 and Γ2 be (loopless) graphs
on n1 and n2 vertices, respectively. Write zi = X−ni. Then W ♯

Γ1⊕Γ2
= W ♯

Γ1
∗T W ♯

Γ2
and

W ♯
Γ1∨Γ2

(X, T ) =
z1z2T − 1 + W ♯

Γ1
(X, z2T )(1− z2T )2 + W ♯

Γ2
(X, z1T )(1− z1T )2

(1− T )2 .

1.8 Group-theoretic context: graphical groups and their conjugacy classes
As shown in [13,14], ask zeta functions arise naturally in the enumeration of linear orbits
and conjugacy classes of unipotent groups. We recall the connection between ask and
class-counting zeta functions in the special case of Baer group schemes.

Class-counting zeta functions of Baer group schemes. Let k(H) denote the number of
conjugacy classes of a group H. Let G be a group scheme of finite type over O. Inspired
by [8], the class-counting zeta function of G is Zcc

G(T ) = ∑∞
k=0 k(G(O/Pk))T k.

Let A = A(X1, . . . , Xℓ) ∈ Md(Z[X1, . . . , Xℓ]) be an antisymmetric matrix of linear
forms. We identify linear forms in Z[X1, . . . , Xℓ] and elements of Zℓ with Xi corresponding
to the ith standard basis vector of Zℓ. With this identification, A is equivalently described
by the alternating bilinear product ⋄: Zd × Zd → Zℓ given by x ⋄ y = xAy⊤ (x, y ∈ Zd).
Using a geometric variant from [21, §2.4] of the classical Baer correspondence, the Baer
group scheme G⋄ attached to ⋄, and hence to A, was defined in [18, §2.4]. The following
was proved in [18] in the special case that the map x 7→ A(x) on Zℓ is injective—the
same arguments apply without this assumption.

Proposition 1.12 (Cf. [18, Prop. 1.1]). Let A ∈ Md(Z[X1, . . . , Xℓ]) be an antisymmetric
matrix of linear forms. Let ⋄: Zd × Zd → Zℓ be the alternating bilinear product attached
to A as above. Let O be a compact DVR of arbitrary characteristic. Let q be the size of
the residue field of O. Then Zcc

G⋄⊗O(T ) = Zask
A/O(qℓT ).

Graphical groups and their class-counting zeta functions. Let Γ be a loopless graph.
The graphical group scheme GΓ (over Z) associated with Γ was defined in [18, §3.4].
For a group-theoretic description, see [15, §1.1]. Using our notation from §§1.1–1.2, GΓ
is the Baer group scheme associated with the alternating bilinear product attached to
the antisymmetric matrix of linear forms A−Γ . (We require Γ to be loopless for A−Γ to be
antisymmetric.) The group GΓ(Z) is the maximal nilpotent quotient of class at most
two of the right-angled Artin group associated with the (loopless) complement of Γ. For
each odd prime p, we have GΓ(Fp) ≈ GΓ(Z)/GΓ(Z)p. The following consequence of
Proposition 1.12 provides a group-theoretic motivation for studying the functions W−

Γ .

9



1 Introduction

Corollary 1.13 (Cf. [18, Prop. 3.9]). Let Γ be a loopless graph with m edges. Let O be a
compact DVR with residue field of size q. Then Zcc

GΓ⊗O(T ) = W−
Γ (q, qmT ). ♦

In this way, our results from §1.4 have immediate group-theoretic consequences in that
they provide us with formulae for class-counting zeta functions of graphical groups.

1.9 Related work: from hypergraphs to cographs and back again
Theorem 1.3(ii)–(iii) notwithstanding, it appears to be very difficult to produce explicit
examples of the rational functions W±

Γ (X, T ) for interesting families of graphs. On the
other hand, we do have a very precise formula for WH(X, T ). As in [18], for a finite set V ,
let ŴO(V ) denote the poset of (possibly empty) flags of (possibly empty) subsets of V .

Theorem 1.14 (Cf. [18, Thm C]). Let H = (V, E, ı) be a hypergraph. For U ⊂ V , define
Ǔ = {e ∈ E : ∃u ∈ U, u ı e}. Then

WH(X, T ) =
∑

y∈ŴO(V )

(1−X−1)|sup(y)| ∏
U∈y

X |U |−|Ǔ |T

1−X |U |−|Ǔ |T
. (1.3)

Proof. For I ⊂ V , define µI = #{e ∈ E : I = {v ∈ V : v ı e}}. By [18, Thm C],

WH(X, T ) =
∑

y∈ŴO(V )

(1−X−1)|sup(y)| ∏
U∈y

X
|U |−

∑
I∩U ̸=∅ µI T

1−X
|U |−

∑
I∩U ̸=∅ µI T

.

The claim follows since for each U ⊂ V , we have ∑
I∩U ̸=∅

µI = |Ǔ |. ♦

The number of summands in (1.3) grows super-exponentially with |V |; see [18, (1.4)].
While Theorem 1.14 is therefore of limited use when it comes to explicitly computing
WH(X, T ), it turns out to be a powerful theoretical tool; see [18, Thms E–F]. The following
result from [18] constitutes a bridge between incidence structures in hypergraphs and
adjacency structures in graphs.

Theorem 1.15 (Cograph Modelling Theorem [18, Thm D]). Let Γ be a cograph. Then
there exists an explicit hypergraph H such that W−

Γ (X, T ) = WH(X, T ).

Hence, if Γ is a cograph, then Theorem 1.14 and its many consequences in [18] apply
to W−

Γ (X, T ). Following [18], we refer to H as in Theorem 1.15 as a model or a
modelling hypergraph of Γ. Theorem B shows that if Γ is a reflexive graph, then
W−

Γ (X, T ) = WH(X, T ) for H = Adj(Γ). In contrast, the explicit modelling hypergraph
in the proof of Theorem 1.15 in [18] is constructed recursively in terms of decompositions
of a cograph Γ into joins and disjoint unions of subgraphs. We note that by combining
Theorem A and results from [18, §5], we obtain a new simple new proof of Theorem 1.15
in §11.6.

10
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1.10 Methodology
All main results in the present paper rely on a new proof of Theorem 1.3.

The Uniformity Theorem: behind the scenes. Given a matrix of linear forms A over a
compact DVR O with maximal ideal P, [13, §4] provides formulae for Zask

A/O(T ) in terms
of P-adic integrals. Using ideas from [22], these integrals are expressible in terms of the
ideals of minors of A itself or of one of its Knuth duals in the sense of [14]. In the cases
of the matrices AH (resp. A±Γ ) from §1.2, we record descriptions of such P-adic integrals
representing the associated ask zeta functions in Proposition 3.2 (resp. Proposition 3.4)
below. For the integral notation that we use, see (3.1)–(3.2). In these integrals, IiH (resp.
IiΓ±) denotes the ideal generated by the i× i minors of a certain matrix of linear forms
CH (resp. C±Γ ). In the language of [14], CH (resp. C±Γ ) is the ◦-dual of AH (resp. A±Γ ).

The proof of Theorem 1.3 (parts (ii)–(iii), in particular) in [18] was based on an analysis
of integrals as in (3.1)–(3.2) using toric geometry and an elaborate recursion. Working
directly with ideals of minors of matrices of linear forms can quickly become daunting
and the recursive approach from [18] allowed us to completely avoid investigating any
minors. In essence, for a given graph Γ, the proof of Theorem 1.3(ii)–(iii) expressed each
integral (3.2) as an unspecified finite sum of monomial P-adic integrals. For each of
the latter integrals, conclusions analogous to Theorem 1.3 are well known to hold; see
Proposition 2.3 below. The proof of Theorem 1.15 relied on very similar core ingredients.

Key new tool: an explicit combinatorial parameterisation of minors The technical
innovation of the present article is an explicit combinatorial parameterisation of the
nonzero minors in the integrals (3.1)–(3.2). Our parameterisation will be obtained in
Proposition 4.1 for hypergraphs and in Theorem 6.1 for graphs, the latter case being
much more involved. Our parameterisation shows that (assuming invertibility of 2 in the
study of A+

Γ ) each of the ideals of minors in (3.1)–(3.2) is generated by monomials. As a
first application of our parameterisation, we obtain a new proof of Theorem 1.3 using
the well-known uniform rationality of monomial P-adic integrals (Proposition 2.3).

Crucially, we prove significantly more than monomiality of the aforementioned ideals
of minors. Namely, we show that up to signs (and multiplication by powers of 2 in
the case of A+

Γ ), the nonzero minors in question are explicit monomials derived from
combinatorial gadgets attached to hypergraphs and graphs that we call selectors and
animations, respectively. Here, a selector of a hypergraph H = (V, E, ı) is a partial
function ϕ defined on some subset of E such that, whenever it is defined, ϕ sends a
hyperedge e to one of its incident vertices. Similarly, an animation of a graph is a
partial function on the vertex set which, whenever defined, sends a vertex to one of its
neighbours. For formal definitions, see §4 and §6.2.

By studying algebraic and combinatorial features of animations, we obtain our two main
results, Theorem A and Theorem B. When studying the rational functions W−

Γ (X, T )
attached to loopless graph, our parameterisation of minors leads us to consider nilpotent
animations, within an ambient monoid of partial functions. These have a rich algebraic
and combinatorial structure which forms the basis of our proof of Theorem A.

11
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1.11 Overview
In §2, we collect basic material on ask zeta functions. In §3, we review facts on ask
zeta functions attached to graphs and hypergraphs. Ask zeta functions associated with
hypergraphs are the subject of §4, culminating in a new proof of Theorem 1.3(i) by means
of selectors. As indicated above, the case of graphs is considerably more complicated.
In §5, we lay the foundation for our analysis of the rational functions W±

Γ by means
of animations in §6. As a by-product, we obtain a new proof of Theorem 1.3(ii)–(iii).
Drawing upon the machinery that we developed, the Reflexive Graph Modelling Theorem
(Theorem B) follows quite easily in §7. The next sections lay the groundwork for the
proof of Theorem A in §9. Section 8 is devoted entirely to nilpotent animations. These
play a crucial role in our study of W−

Γ for loopless Γ. In §9, we relate the nilpotent
animations of a join Γ1 ∨Γ2 of two loopless graphs to those of the Γi. At first glance, §10
might be mistaken for a non sequitur: in it, we investigate the effect of adding generic
rows to matrices of linear forms on associated ask zeta functions. This investigation
will play a small but pivotal role in our proof of Theorem A in §11. Finally, in §12, we
have a closer look at the rational functions W ♯

Γ from Definition 1.11. In particular, we
prove Proposition C, we derive an explicit formula in the spirit of Theorem 1.14 for W ♯

Γ
(Proposition 12.1), we deduce key analytic properties (Proposition 12.3, and we collect
several examples of these rational functions.

1.12 Notation
Sets, functions, and logic. Maps usually act on the right. We write A ⊔ B for the
disjoint union of the sets A and B. We write A ⊂ B to indicate that A is a not necessarily
proper subset of B. For a property P , we write [P ] for the Iverson bracket

[P ] =
{

1, if P is true,

0, otherwise.

Rings and modules. All rings are assumed to be associative, commutative, and unital.
Let R be a ring. By an R-algebra, we mean a ring S endowed with a ring map R→ S.
Let U be a set. Let RU denote the free R-module on U with basis (bu)u∈U . For x ∈ RU ,
we define xu ∈ R (u ∈ U) via x = ∑

u∈U xubu. For a subset A ⊂ R (not necessarily a
subring or an ideal), we occasionally write AR = {x ∈ RU : xu ∈ A for all u ∈ U}.

We write XU = (Xu)u∈U for a chosen set of algebraically independent variables over R.
Each a ∈ ZU gives rise to the Laurent monomial Xa

U = ∏
u∈U Xau

u . By a monomial
ideal I of R[XU ], we mean an ideal of the form I = ⟨Xa

U : a ∈ A⟩ for some A ⊆ N0U . It
is well known that if I is a monomial ideal as before, then the set A can be chosen to
be finite. By a linear form in R[XU ], we mean a polynomial of the form ∑

u∈U cuXu

(cu ∈ U). If S is an R-algebra, then by sending x ∈ SU to the map which evaluates
polynomials in XU at x, we obtain a canonical bijection between SU and the set of
R-algebra homomorphisms R[XU ]→ S.

12
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Discrete valuation rings. Throughout, O denotes a compact DVR with maximal ideal P
and residue field O/P of size q and characteristic p. For a nonzero finitely generated
O-module M , we write M× = M \PM ; we also set {0}× = {0}. Let π ∈ P \P2 denote a
fixed uniformiser. Let K be the field of fractions of O. Let |·| be the absolute value on K
with |π| = q−1 and let ∥·∥ denote the associated maximum norm. We write µ for the Haar
measure on O with total volume 1. We use the same symbol for the product measure
on a free O-module of finite rank. We let ν = νK denote the normalised (additive)
valuation on K with ν(π) = 1. For a finite set U and x ∈ KU with ∏u∈U xu ̸= 0, we
write ν(x) = ∑

u∈U ν(xu)bu ∈ ZU .

Further notation.
Notation comment reference
Ik(M) ideal generated by k × k minors of M §2

Zask
A/O, ζask

A/O ask zeta functions §2
H = (V, E, ı) hypergraph §3.1
∥e∥, ∥e∥H support of the hyperedge e §1.2

H[V ′ | E′] subhypergraph §3.1
⊕, ∨ disjoint union, join / complete union §3.1, §3.3, §11.6

AH, CH linearised incidence matrix, its ◦-dual §3.2
IkH Ik(CH) §3.2∫

W
H(s) integral expression for ζask

AH/O(s) (3.1), Proposition 3.2
A±

Γ , C±
Γ linearised adjacency matrix, its ◦-dual §3.4

I
±
k Γ, 1

2I
+
Γ Ik(C±

Γ ) over Z or Z[1/2] §3.4∫
W

Γ±(s) integral expression for ζask
A±

Γ /O
(s) (3.2), Proposition 3.4

U⊥ U ⊔ {⊥} §4
D(ϕ) domain of definition of ϕ §4
Y ϕ∗ preimage of Y under ϕ §4

deg(ϕ) |D(ϕ)| §4
mon(ϕ) monomial associated with ϕ §4
ϕ ↾ U ′ restriction of ϕ to U ′ §4

ϕ[x← y] redefining ϕ §4
∼ adjacency in a graph §3.3
Γ̂ reflexive closure §1.7

W ±
Γ , WH ask zeta function associated with (hyper)graph Theorem 1.3

W ♯
Γ common value of W +

Γ̂ = W −
Γ̂ = WAdj(Γ̂) Definition 1.11

Sel(H) selectors §4
Adj(Γ) adjacency hypergraph §1.6, §3.3
Inc(Γ) incidence hypergraph §3.3

m±
Γ [V ′ | E′] minor of C±

Γ §5.2, §6.3
ol(ϕ) number of ϕ-orbits of odd length > 1 §6.1

Ani(Γ) animations §6.2
Nil(Γ), Fix(Γ), Odd(Γ) special sets of animations §6.2

≼α preorder derived from a partial function §8.1
lastα(v) unique ≼α-maximal element above v §8.1

≼u partial order relative to distinguished vertex §8.3
≃ equivalence of matrices §10.1

λ(A), λi(A) elementary divisors §10.2
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2 Background on ask zeta functions
The following is a brief introduction to ask zeta function attached to matrices of linear
forms. In terms of generality, this perspective lies between [13], which considers modules
of matrices, and [14], which considers so-called module representations. Let R be a ring.
Let U be a finite set. Recall that RU denotes the free R-module with basis (bu)u∈U .

Equivalence. There is a natural action of GL(RU) × GLn(R) × GLm(R) on the R-
module of linear forms within Mn×m(R[XU ]): the second and third factor act by matrix
multiplication on the left and right, respectively, and GL(RU) acts by changing coordi-
nates of linear forms. Two matrices of linear forms A(XU ) and B(XU ) in Mn×m(R[XU ])
are equivalent if they lie in the same orbit under this action. Equivalence in this sense
corresponds to isotopy of module representations in [14].

Ask zeta functions. Let A(XU ) ∈ Mn×m(R[XU ]) be a matrix of linear forms. Let S
be an R-algebra. Given x ∈ SU , we view the specialisation A(x) ∈ Mn×m(S) as a linear
map Sn → Sm acting by right multiplication on rows. If S is finite as a set, we write

askS(A(XU )) = 1
|SU |

∑
x∈SU

|Ker(A(x))|

for the average size of the kernel of these maps.
Let O be a compact DVR endowed with an R-algebra structure. Recall that P denotes

the maximal ideal of O. The (algebraic) ask zeta function of A(XU ) over O is the
formal power series

Zask
A/O(T ) = Zask

A(XU )/O(T ) =
∞∑
k=0

askO/Pk(A(XU ))T k ∈ Q[[T ]].

If A(XU ) and B(XU ) are equivalent matrices of linear forms over R, then ZA(XU )/O(T ) =
ZB(XU )/O(T ) for each O as above. We note that if O has characteristic zero, then
ZA(XU )/O(T ) ∈ Q(T ); see [13, Thm 4.10]. As explained in [13], ask zeta functions arise
in the enumeration of linear orbits and conjugacy classes of unipotent groups.

Writing q = |O/P| for the residue field size of O, we write ζask
A(XU )/O(s) = Zask

A(XU )/O(q−s)
for the (analytic) ask zeta function of A(XU ) over O. The series ζask

A(XU )/O(s) converges
for Re(s) > n. Moreover, ζask

A(XU )/O(s) and Zask
A(XU )/O(T ) determine one another so referring

to both as “the” ask zeta function of A(XU ) constitutes only a minor abuse of terminology.

Duals, minors, and integrals. We will study the zeta functions ζask
A(XU )/O(s) of interest

to us by means of suitable P-adic integrals. Ignoring the harmless effect of replacing
A(XU ) by its transpose (see [13, Lem. 2.4]), using the “Knuth duality” operations from
[14] and the machinery from [13], given A(XU ), we obtain three (in general very different)
formulae for ζask

A(XU )/O(s) by means of P-adic integrals. In addition, each of these formulae
admits an affine and a projective version. Our choice here is the projective form of the
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integral attached to the ◦-dual of A(XU ). To describe this explicitly, let us first order the
elements of U and write U = {u1, . . . , uℓ} where ℓ = |U |. Let V = {v1, . . . , vn} be a set
of cardinality n. We may characterise A(XU ) and a matrix C(XV ) ∈ Mℓ×m(R[XV ]) via

A(XU )ij =
ℓ∑

k=1
αijkXuk

, C(XV )kj =
n∑
i=1

αijkXvi , (2.1)

where αijk ∈ R . We refer to C(XV ) as a ◦-dual of A(XU ). Our use of the indefinite
article reflects the fact that C(XV ) depends on the chosen total orders. Note that by
construction, A(XU ) is a ◦-dual of C(XV ). (The abstract version of the ◦-operation
in [14] is genuinely idempotent.)

Given a matrix M over a ring S and k ⩾ 0, we write Ik(M) or Ik(M ; S) for the ideal
of S generated by the k × k minors of M . We record the following observation.

Lemma 2.1. Let A(XU ) ∈ Mn×m(R[XU ]). Let S be an R-algebra and x ∈ SU . Let
i ⩾ 0. Then Ii(A(x); S) is the ideal of S generated by the image of Ii(A(XU ); R[XU ])
under the specialisation map R[XU ]→ S determined by x. ♦

Let us return to our ◦-dual C(XV ) of A(XU ). Let Ik = Ik(C(XV ); R[XV ]). Note that
Ik is generated by homogeneous elements of degree k and that I0 = ⟨1⟩ = R[XV ].

Proposition 2.2 (Cf. [13, §§4.3–4.4]). Let O be a compact DVR endowed with an R-
algebra structure. Let r be the rank of the image of C(XV ) in Mℓ×m(K[XV ]) over K(XV ).
Then for all s ∈ C with Re(s) > d, we have

(1−q−s)ζask
A(XU )/O(s) = 1+(1−q−1)−1

∫
(OV )××P

|z|s−n+r−1
r∏
i=1

∥Ii−1(x)∥
∥Ii(x) ∪ zIi−1(x)∥ dµ(x, z).

Here and in the following, for an ideal I of R[XV ] and x ∈ SV , we write I(x) for the
ideal of S generated by all f(x) as f(XV ) ranges over I. In the context of Proposition 2.2,
by Lemma 2.1, we have Ii(x) = Ii(C(x); S).

In our applications of Proposition 2.2, the ring R is of the form R = Z[1/N ]. In that
case, r is simply the rank of A(XU ) over Q(XU ); in particular, r does not depend on O.

It is a folklore result in P-adic integration that zeta functions given by P-adic integrals
defined in terms of monomial ideals are uniform in the sense that for some rational
function W (X, T ), these integrals are of the form W (q, q−s) as O ranges over (suitable)
compact DVRs. The following makes this precise for ask zeta functions.

Proposition 2.3. Let the notation be as in Proposition 2.2. Suppose that each of
I1, . . . , Ir is a monomial ideal, say Ik = ⟨Xa

V : a ∈ Ak⟩ for a finite set Ak ⊂ N0V . Then
there exists a rational function W (X, T ) ∈ Q(X, T ) (explicitly expressible in terms of
n, r, and A1, . . . , Ak) such that for all compact DVRs O endowed with an R-algebra
structure, we have Zask

A(XU )/O(T ) = W (q, T ).

Proof. Apply [12, Prop. 3.9] to the affine version [13, Eqn (4.6)] of the integral in
Proposition 2.2. ♦
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3 (Hyper)graphs and their ask zeta functions
3.1 Hypergraph basics
Two hypergraphs H = (V, E, ı) and H′ = (V ′, E′, ı′) are isomorphic if there exist
bijections V

ψ−→ V ′ and E
ϕ−→ E′ such that for all v ∈ V and e ∈ E, we have v ı e if and

only if vϕ ı′ eψ.

Incidence matrices. Let H have m hyperedges and n vertices. Write E = {e1, . . . , em}
and V = {v1, . . . , vn}. Equivalently, we endow E and V with (arbitrary) total orders
≼ and ⊑, respectively, given by e1 ≼ · · · ≼ em and v1 ⊑ · · · ⊑ vn. Having made these
choices, the associated incidence matrix of H is the (0, 1)-matrix AH ∈ Mn×m(Z) given
by (AH)ij = [vi ı ej ] (Iverson bracket notation, see §1.12).

Disjoint unions. Given hypergraphs H = (V, E, ı) and H′ = (V ′, E′, ı′), their disjoint
union is H ⊕ H′ = (V ⊔ V ′, E ⊔ E′, ı ⊔ ı′). Given total orders on V and V ′ (resp. E
and E′), we obtain a total order on V ⊔ V ′ (resp. E ⊔ E′) in which the elements of V
(resp. E) precede those of V ′ (resp. E′). With respect to these orders, we then have
AH⊕H′ =

[
AH 0
0 AH′

]
.

Subhypergraphs. Let H = (V, E, ı) be a hypergraph. A subhypergraph of H is a
hypergraph H′ = (V ′, E′, ı′) with V ⊂ V ′, E ⊂ E′, and ı′⊂ ı. Given subsets V ′ ⊂ V and
E′ ⊂ E, the associated induced subhypergraph of H is

H[V ′ | E′] = (V ′, E′, ı ∩(V ′ × E′)).

Subhypergraphs of (incidence hypergraphs of) graphs will play an important role through-
out this article; see §3.3.

Order the vertices and hyperedges of H as above to define the incidence matrix AH.
Then the incidence matrix of H[V ′ | E′] relative to the induced total orders on V ′ and
E′ is the submatrix of AH obtained by selecting rows from V ′ and columns from E′,
respectively.

3.2 Ask zeta functions associated with hypergraphs: ζask
AH/O

Let H = (V, E, ı) be a hypergraph with m hyperedges and n vertices. Write E =
{e1, . . . , em} and V = {v1, . . . , vn}. Let F = F(H) = {(v, e) ∈ V × E : v ı e} be the set
of flags of H. Let AH = AH(XF ) ∈ Mn×m(Z[XF ]) be the matrix of linear forms with

AH(XF )ij =
{

X(vi,ej), if vi ı ej ,

0, otherwise.

Up to equivalence (see §2), AH(XF ) only depends on H and not on the chosen total
orders. Note that AH(XF ) is obtained from the incidence matrix AH of H (w.r.t. the
given total orders on V and E) by replacing nonzero entries by distinct variables. We
refer to AH(XF ) as the linearised incidence matrix of H.
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Remark 3.1. The zeta function we denote by ζask
AH/O

(s) here coincides with Zask
ηO (q−s)

from [18, §3.2], where η denotes the incidence representation of H.
Write f = |F |. By ordering F lexicographically relative to the chosen total orders on

V and E, we may identify F and {1, . . . , f}. Let CH = CH(XV ) ∈ Mf×m(Z[XV ]) be the
matrix such that for (v, e) ∈ F and j ∈ {1, . . . m}, we have

CH(XV )(v,e)j =
{

Xv, if e = ej ,

0, otherwise.

It is easy to see (cf. [18, §3.2]) that CH is a ◦-dual of AH(XF ). Let IkH = Ik(CH) ⊂
Z[XV ] denote the ideal of Z[XV ] generated by the k× k minors of CH. In contrast to CH,
the ideal IkH only depends on H and not on the arbitrary choices of total orders on V ,
E, and F used to define CH. Write rH = rkQ(XV )(CH); we will derive a simple description
of this number in Proposition 7.1 below. For W ⊂ OV ×O, we define∫

W

H(s) :=
∫
W

|z|s−n+rH−1
rH∏
i=1

∥Ii−1H(x)∥
∥IiH(x) ∪ zIi−1H(x)∥ dµ(x, z), (3.1)

where µ denotes the normalised Haar measure on OV ×O. Proposition 2.2 (with R = Z)
then yields the following.
Proposition 3.2. For each compact DVR O and s ∈ C with Re(s) > n, we have

(1− q−s)ζask
AH/O

(s) = 1 + (1− q−1)−1
∫

(OV )××P

H(s). ♦

3.3 Graph basics
By a graph, we mean a pair Γ = (V, E) where V is a finite set and E is a set of subsets
of V , each of which has cardinality 1 or 2. As usual, we refer to the elements of V and
E as the vertices and edges of Γ, respectively. We explicitly allow loops (i.e. edges e
with |e| = 1) but no parallel edges. Let ∼=∼Γ⊂ V × V be the (symmetric) adjacency
relation of Γ. Hence, v ∼ v′ if and only if {v, v′} ∈ E. By a subgraph of Γ, we mean a
graph Γ′ = (V ′, E′) with V ′ ⊂ V and E′ ⊂ E.

Hypergraphs from graphs. Let ı = ıΓ⊂ V × E be the incidence relation of Γ. (Hence,
v ı e if and only if v ∈ e.) Every graph gives rise to two hypergraphs that will be of
interest to us: the incidence hypergraph Inc(Γ) = (V, E, ıΓ) and the adjacency
hypergraph Adj(Γ) = (V, V,∼Γ). The former of these simply amounts to viewing a
graph Γ as a hypergraph whose hyperedges are the edges of Γ with the evident incidence
relation.

Disjoint unions and joins. Given graphs Γ and Γ′, we let Γ⊕ Γ′ denote their disjoint
union. We have Inc(Γ⊕Γ′) = Inc(Γ)⊕Inc(Γ′) and Adj(Γ⊕Γ′) = Adj(Γ)⊕Adj(Γ′).
The join Γ ∨ Γ′ of Γ and Γ′ is obtained from Γ⊕ Γ′ by adding an edge connecting each
vertex of Γ to each vertex of Γ′.
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Adjacency and incidence matrices. Let Γ have n vertices, say V = {v1, . . . , vn}. As
usual, the adjacency matrix AΓ ∈ Mn(Z) of Γ (relative to the chosen total order on V )
is the (0, 1)-matrix given by (AΓ)ij = [vi ∼ vj ]. Note that, using the same total order on
V throughout, the adjacency matrix AΓ of Γ coincides with the incidence matrix AAdj(Γ)
of the adjacency hypergraph of Γ.

3.4 Two ask zeta functions associated with graphs: ζask
A+

Γ /O
and ζask

A−
Γ /O

Let Γ = (V, E) be a graph with m edges and n vertices. As in the previous section, we
write V = {v1, . . . , vn} which reflects a choice of a total order ≼ on V with v1 ≼ · · · ≼ vn.
Each edge e ∈ E is of the form {vi, vj} with i ⩽ j and vi ∼ vj . We obtain a total order
on E, which we again denote by ≼, by mapping e to (i, j) and by ordering the resulting
pairs of numbers lexicographically. Let e1 ≼ · · · ≼ em be the distinct edges of Γ. Using
this order, we identify E and {1, . . . , m}.

Following (and, in fact, slightly generalising) [18], we now define matrices A+
Γ (XE) and

A−Γ (XE) in Mn×n(Z[XE ]). Namely, A±Γ is the matrix given by the following conditions:

• For 1 ⩽ i ⩽ j ⩽ n, we have

A±Γ (XE)ij =
{

Xe, if e := {vi, vj} ∈ E,

0, otherwise.

• For 1 ⩽ i < j ⩽ n, we have A±Γ (XE)ij = ±A±Γ (XE)ji.

We refer to A+
Γ and A−Γ as the linearised adjacency matrices of Γ. Note that A+

Γ is
symmetric and if Γ is loopless, then A−Γ is antisymmetric. The matrix A−Γ + (A−Γ )⊤ is
diagonal and the (i, i)-entry of A±Γ is X{vi} if vi ∼ vi in Γ and zero otherwise.

Remark 3.3. The zeta function we denote by ζask
A±

Γ /O
(s) here coincides with Zask

γO±
(q−s)

from [18], where γ± denotes the (positive or negative) adjacency representation of Γ
[18, §3.2]. We note that Γ was assumed to be loopless in the definition of γ− in [18].

Let C±Γ = C±Γ (XV ) ∈ Mm×n(Z[XV ]) be the matrix defined as follows: given an edge
e = {vi, vj} with i ⩽ j and k ∈ {1, . . . , n}, we define

(C±Γ )ek =


Xi, if k = j,

±Xj , if k = i and i ̸= j,

0, otherwise.

It is easy to see (cf. [18, §3.3]) that C±Γ (XV ) is a ◦-dual of A±Γ (XF ).
Let I±k Γ = Ik(C±Γ ), an ideal of Z[XV ]. We also write 1

2I
+
k Γ for the ideal of (Z[1

2 ])[XV ]
generated by I+

k Γ. As for hypergraphs, all of these ideals only depend on Γ and the
chosen “type”, + or −, not on the total order on the vertices of Γ used to define C±Γ .
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4 Selectors of hypergraphs

Write rΓ[±] = rkQ(XV )(C±Γ ); we will obtain graph-theoretic interpretations of these
numbers in Proposition 7.2 and Proposition 7.5. For W ⊂ OV ×O, we define

∫
W

Γ±(s) :=
∫
W

|z|s−n+rΓ[±]−1
rΓ[±]∏
i=1

∥I±i−1Γ(x)∥
∥I±i Γ(x) ∪ zI±i−1Γ(x)∥

dµ(x, z), (3.2)

where µ is the normalised Haar measure on OV × O. Proposition 2.2 then yields the
following.

Proposition 3.4. For each compact DVR O and s ∈ C with Re(s) > n, we have

(1− q−s)ζask
A±

Γ /O
(s) = 1 + (1− q−1)−1

∫
(OV )××P

Γ±(s). ♦

Remark 3.5. If O has odd residue characteristic in the +-case of Proposition 3.4, then
we may replace each I+

i Γ by 1
2I

+
i Γ in the definition of

∫
W Γ+(s).

4 Selectors of hypergraphs
Let H be a hypergraph. We derive an explicit combinatorial parameterisation of the
minors of CH (see §3.2) in terms of partial functions that we call selectors. Apart from
immediately providing us with a new proof of Theorem 1.3(i), the results of this section
will play a key role in our proof of Theorem B in §7.

Partial functions. Given a set U , we let U⊥ denote the set obtained from U by adjoining
an additional element ⊥. We write ϕ: U d V and U

ϕ
999K V to indicate a partial function

ϕ from U to V . The domain of definition D(ϕ) of ϕ consists of those u ∈ U for which
uϕ is defined. We tacitly identify partial functions ϕ: U d V and those total functions
U⊥ → V⊥ which send ⊥ to ⊥. For Y ⊂ V⊥, write Y ϕ∗ = {u ∈ U⊥ : uα ∈ Y }. In
particular, D(ϕ) = {u ∈ U : uϕ ̸= ⊥} = V ϕ∗ . We write deg(ϕ) = |D(ϕ)| for the degree
of ϕ. Given U

ϕ
999K V , let

mon(ϕ) =
∏

u∈D(ϕ)
Xuϕ ∈ Z[XV ].

Note that deg(ϕ) is the (total) degree of mon(ϕ) as a monomial in Z[XV ].
We will often find the need to modify or extend partial functions. Let U

ϕ
999K V be

a partial function. Let u1, . . . , ur ∈ U be distinct elements and let v1, . . . , vr ∈ V be
arbitrary. We define

ϕ[u1 ← v1, . . . , ur ← vr]

to be the partial function U d V given by

u 7→
{

vi, if u = ui,

uϕ, otherwise.
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4 Selectors of hypergraphs

Let U ′ ⊂ U . We identify partial functions U ′ d V and those partial functions U d V

that are undefined outside of U ′. Given U
ϕ
999K V , we let ϕ ↾ U ′ denote the partial function

u 7→
{

uϕ, if u ∈ U ′,

⊥, otherwise.

Selectors. Let H = (V, E, ı) be a hypergraph. By a (vertex) selector of H, we mean a
partial function E

ϕ
999K V such that eϕ ı e for all e ∈ D(ϕ). In other words, a selector ϕ of H

consists of a subset E′ = D(ϕ) of E together with a choice of a vertex eϕ incident with
e ∈ E′. Let Sel(H) be the set of all selectors of H and Selk(H) = {ϕ ∈ Sel(H) : deg(ϕ) = k}.

Minors. Using Propositions 2.3 and 3.2, the following description of the minors of CH
provides a new proof of Theorem 1.3(i), quite different from the one in [18, §4.4].

Proposition 4.1. We have IkH =
〈
mon(ϕ) : ϕ ∈ Selk(H)

〉
. More precisely, the nonzero

minors of CH are precisely of the form ±mon(ϕ) for ϕ ∈ Sel(H).

Proof. Let H have m hyperedges and n vertices. Write E = {e1, . . . , em} and V =
{v1, . . . , vn}. Define and order F = F(H) as in §3.2. Given F ′ ⊂ F and E′ ⊂ E with
|F ′| = |E′| = k, let CH[E′ | F ′] be the submatrix of CH with rows indexed by F ′ and
columns indexed by E′. Write mH[E′ | F ′] = det(CH[E′ | F ′]) for the associated minor.

We first show that given F ′ and E′ as above, either mH[E′ | F ′] = 0 or mH[E′ | F ′] =
±mon(ϕ) for some ϕ ∈ Selk(H). Let (u1, f1), . . . , (uk, fk) be the distinct elements of F ′.
If fi = fj for i ̸= j, then the rows of CH[E′ | F ′] indexed by (ui, fi) and (uj , fj) are
linearly dependent over Q(XV ) whence mH[E′ | F ′] = 0. We may thus assume that
E′′ := {f1, . . . , fk} has cardinality k. Next, if fi /∈ E′ for some i, then the row of CH[E′ |
F ′] indexed by (ui, fi) is zero so that again mH[E′ | F ′] = 0. Therefore, we may assume
that E′ = E′′. In this case, we clearly have mH[E′ | F ′] = ±∏k

i=1 Xui . Define a selector
E

ϕ
999K V via D(ϕ) = E′ and fϕi = ui for i = 1, . . . , k. Then mH[E′ | F ′] = ±mon(ϕ).
Conversely, given ϕ ∈ Sel(H), let E′ = D(ϕ) and F ′ = {(eϕ, e) : e ∈ E′} so that

mH[E′ | F ′] = ±mon(ϕ). ♦

Our proof of Proposition 4.1 will act as a template for the much more involved case of
the matrices C±Γ in §6.

Corollary 4.2. Let H = (V, E, ı) be a hypergraph. Then

rkQ(XV )(CH) = max(k ⩾ 0 : Selk(H) ̸= ∅) = max(deg(ϕ) : ϕ ∈ Sel(H)). ♦

New proof of Theorem 1.3(i). Combine Proposition 2.3, Proposition 3.2, and Proposi-
tion 4.1. ♦
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5 Towards minors: paths and cycles in hypergraphs

5 Towards minors: paths and cycles in hypergraphs
Our next goal, to be achieved in §6, is to provide a combinatorial parameterisation
of the minors of the matrices C±Γ associated with a graph Γ = (V, E) in §3.4. The
columns and rows of C±Γ correspond to elements of V and E, respectively. Given subsets
V ′ ⊂ V and E′ ⊂ E with |V ′| = |E′| = k, we therefore obtain an associated k × k minor
m±Γ [V ′ | E′] of C±Γ . It turns out that these minors can be conveniently studied in terms
of the subhypergraphs H[V ′ | E′] of the incidence hypergraph H = Inc(Γ) of Γ.

5.1 Degeneracy and connectivity of hypergraphs
Let H = (V, E, ı) be a hypergraph. Two hyperedges e, e′ ∈ E are parallel if ∥e∥ = ∥e′∥.
If ∥e∥ ≠ ∥e′∥ whenever e ̸= e′ for e, e′ ∈ E, then H is simple. A loop of H is a hyperedge
e ∈ E with #∥e∥ = 1. Following [4, §1.1], we call iso(H) = {v ∈ V : v ̸ ı e for all e ∈ E}
and emp(H) = {e ∈ E : ∥e∥ = ∅} the sets of isolated vertices and empty hyperedges
of H, respectively. We call H nondegenerate if iso(H) = emp(H) = ∅.

The following notion of connectivity of hypergraphs is adapted from [4, §1.2]. Given
vertices u, v ∈ V , a walk of length r ⩾ 0 from u to v is a sequence

u = u1, e1, u2, e2, . . . , ur, er, ur+1 = v

with u1, . . . , ur+1 ∈ V and e1, . . . , er ∈ E such that always ui ı ei and ui+1 ı ei.
We say that vertices u, v ∈ V of H are connected if there exists a walk from u to v.

This defines an equivalence relation on V . Let V1, . . . , Vc be the distinct equivalence
classes. Write Ej = {e ∈ E : ∥e∥ ∩ Vj ̸= ∅} and define Hj = H[Vj | Ej ] to be the
associated induced subhypergraph. Let H0 = (∅, emp(H), ∅). It is then easy to see
that H = H0 ⊕ · · · ⊕ Hc. We refer to the subhypergraphs H1, . . . , Hc as the connected
components of H. We say that H is connected if emp(H) = ∅ and c = 1. (Note that
using this definition, every hypergraph without vertices is disconnected.) If Γ is a graph,
then Inc(Γ) is connected if and only if Γ is connected in the usual graph-theoretic sense.

Lemma 5.1. A hypergraph H = (V, E, ı) is connected if and only if V ̸= ∅, emp(H) = ∅,
and whenever H = H1 ⊕ H2 for hypergraphs H1 and H2, one of the summands is (∅, ∅, ∅).

Proof. Suppose that H is connected. As connectivity yields a (single) equivalence class
on V , we have V ̸= ∅. Suppose that H = H1 ⊕ H2 for Hj = (Vj , Ej , ıj). If vj ∈ Vj for
j = 1, 2, then v1 and v2 cannot be connected in H. Since H is connected, we may assume
that, without loss of generality, V1 = ∅. As emp(H) = ∅, we then obtain E1 = ∅ = ı1.

Conversely, suppose that H satisfies the conditions stated. Write H = H0⊕· · ·⊕Hc as in
the paragraph preceding this lemma. Since V ̸= ∅, we have c ⩾ 1 and since emp(H) = ∅,
we have H0 = (∅, ∅, ∅). Hence, H = H1 ⊕ · · · ⊕ Hc whence c = 1 by assumption. ♦

The following lemma simply asserts that the determinant of a block diagonal square
matrix (with entries in some ring) can only be nonzero if all diagonal blocks are squares.

Lemma 5.2. Let H = H1 ⊕ · · · ⊕Hr, where each Hj = (Vj , Ej , ıj) is a hypergraph. Write
mj = |Ej | and nj = |Vj |. Suppose that

∑r
j=1 mj = ∑r

j=1 nj.

21



5 Towards minors: paths and cycles in hypergraphs

(i) If mj ̸= nj for some j, then det(AH) = 0.

(ii) If mj = nj for all j, then det(AH) = ±∏r
j=1 det(AHj

).
Proof. Only (i) merits a proof. If mj ̸= nj for some j and ∑r

j=1 mj = ∑r
j=1 nj , then

nj > mj for some j. The rows of AHj
∈ Mnj×mj (Z[XVj ]) are then linearly dependent

over Q(XVj ) whence det(AH) = 0. ♦

5.2 Hypergraph decompositions of graphs and nonzero minors
Let Γ = (V, E) be a graph with associated incidence hypergraph H = Inc(Γ) = (V, E, ı).
The minors of C±Γ are parameterised by pairs (V ′, E′) with V ′ ⊂ V , E′ ⊂ E, and
|V ′| = |E′|. While such a pair (V ′, E′) may not be a subgraph of Γ, we may always
consider the associated induced subhypergraph H′ = H[V ′ | E′] of H as in §3.1.

Let Γ have m edges and n vertices. Order and index the vertices and edges of Γ as in §3.4.
Given V ′ ⊂ V and E′ ⊂ E, we let C±Γ [V ′ | E′] denote the submatrix of C±Γ obtained by
selecting the rows indexed by elements of E′ and the columns indexed by elements of V ′.
Henceforth, we assume that |V ′| = |E′| = k. We write m±Γ [V ′ | E′] = det(C±Γ [V ′ | E′])
for the minor of C±Γ corresponding to (V ′, E′).
Lemma 5.3. If the hypergraph H[V ′ | E′] is degenerate, then m±Γ [V ′ | E′] = 0.

Proof. An isolated vertex (resp. empty hyperedge) of H[V ′ | E′] gives rise to a zero
column (resp. zero row) of C±Γ [V ′ | E′]. ♦

Let H′ = H[V ′ | E′] be nondegenerate. Let H′ = H′1 ⊕ · · · ⊕ H′c be its decomposition
into connected components. Write H′j = H[V ′j | E′j ], where V ′ = V ′1 ⊔ · · · ⊔ V ′c and
E′ = E′1⊔ · · · ⊔E′c. We call a hypergraph square if it has as many hyperedges as vertices.
Lemma 5.4.

(i) If some H′j is nonsquare, then m±Γ [V ′ | E′] = 0.

(ii) If each H′j is square, then m±Γ [V ′ | E′] = ±
c∏
j=1

m±Γ [V ′j | E′j ].

Proof. By changing our total order on V (resp. E) if needed, we may assume that
each element of V ′j (resp. E′j) precedes every element of V ′j+1 (resp. E′j+1). The matrix
C±Γ [V ′ | E′] is then a block diagonal matrix with blocks C±Γ [V ′j | E′j ]. Both claims then
follow from Lemma 5.2. Indeed, every a× b matrix (with entries in a ring) is obtained by
specialising AHa,b

, where, following [18, §3.1], Ha,b is the block hypergraph with a vertices
and b hyperedges such that every vertex is incident with every hyperedge. ♦

Remark 5.5. Even though Γ is assumed to be simple as a graph—equivalently, Inc(Γ)
is assumed simple as a hypergraph—H′ need not be simple. In particular, suppose that
e = {u, v} and f = {u, w} with v ̸= w are edges of Γ that both belong to E′. Further
suppose that u ∈ V ′ but v, w /∈ V ′. Then e and f are distinct parallel loops of H[V ′ | E′].

To summarise: in studying the minors m±Γ [V ′ | E′], we obtained a reduction to the
case that H′ is nondegenerate, connected, and square.
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5.3 Unicyclic graphs and related hypergraphs
Following [10], a graph is unicyclic if it is connected and contains a unique cycle.
Equivalently, a graph is unicyclic if and only if it is connected and contains as many
vertices as edges. Unicyclic graphs are precisely those graphs obtained from a tree by
adding an edge connecting two previously non-adjacent (not necessarily distinct!) vertices.

In the preceding subsection, we reduced the study of the minors m±Γ [V ′ | E′] to the
case when H[V ′ | E′] is connected and nondegenerate, where H = Inc(Γ). The following
outlines the highly restricted possible shapes of the subhypergraphs H[V ′ | E′].

Lemma 5.6 (“Unicyclicity lemma”). Let Γ = (V, E) be a graph and H = Inc(Γ). Let
V ′ ⊂ V and E′ ⊂ E have the same cardinality. Let H′ = H[V ′ | E′] be connected and
nondegenerate. Then precisely one of the following conditions is satisfied.

(U1) (V ′, E′) is a unicyclic loopless subgraph of Γ and H′ is its incidence hypergraph.

(U2) H′ contains a unique loop e◦ and (V ′, E′ \ {e◦}) is a subtree of Γ.

Proof. We write k = |V ′| = |E′|. As H′ is nondegenerate and Γ is a graph, every hyperedge
of H′ contains either one or two vertices. Let E′′ ⊂ E′ consist of those e ∈ E′ with
#∥e∥H′ = 2. As loops are irrelevant for connectivity, the hypergraph H′′ = H[V ′ | E′′] is
still connected. Note that this hypergraph is the incidence hypergraph of the loopless
graph Γ′′ = (V ′, E′′). It follows that Γ′′ is connected (as a graph) with k vertices.
Therefore, Γ′′ contains at least k− 1 edges. On the other hand, since E′′ ⊂ E′, the graph
Γ′′ contains at most k edges. This leaves us with two cases.

(i) If E′′ = E′ (i.e. Γ′′ has k edges), then H′ is the incidence hypergraph of the unicyclic
loopless graph (V ′, E′).

(ii) Otherwise, H′ contains a unique loop e◦, we have E′ = E′′ ∪ {e◦}, and Γ′′ =
(V ′, E′\{e◦}) is a tree. The edge e◦ may or may not be a loop of Γ; cf. Remark 5.5. ♦

6 Animations of graphs
Proposition 4.1 not only shows that each ideal IkH of minors attached to a hypergraph H is
monomial. It also provides explicit (monomial) generators parameterised by combinatorial
gadgets, namely selectors. This parameterisation is not faithful: it is easy to produce
examples of distinct selectors giving rise to the same minor. In this section, we will
derive similar (albeit more delicate) parameterisations of monomial generators of I−k Γ
and 1

2I
+
k Γ by means of what we call animations of Γ. These parameterisations are not

faithful either. In later sections, this will emerge as a useful feature which allows us to
manipulate animations by means of combinatorial procedures.

Throughout this section, let Γ = (V, E) be a graph with incidence hypergraph H =
Inc(Γ); see §3.3.

23



6 Animations of graphs

6.1 Nilpotency, periodic, and transient points
Let U be a finite set. Let Par(U) denote the set of all partial functions U d U ; see §4.
This is a monoid with respect to composition (of functions U⊥ → U⊥) with zero element
given by the nowhere defined function. In particular, we have a natural notion of
nilpotency for elements of Par(U). Namely, ϕ ∈ Par(U) is nilpotent if there exists some
n ⩾ 1 such that the n-fold composite ϕn sends all points of U to ⊥.

Let U
ϕ
999K U be given. Borrowing terminology from finite dynamical systems, we call

u ∈ U a ϕ-periodic point if uϕ
n = u for some n ⩾ 1; otherwise, u is a ϕ-transient

point. Let Uper ⊂ U consist of all ϕ-periodic points. Then Uper
⊥ = Uper ⊔ {⊥} is the set

of periodic points of ϕ viewed as a total function U⊥ → U⊥. Let U tra ⊂ V be the set of
ϕ-transient points on U⊥. That is,

U tra = {u ∈ U : uϕ
k ∈ Uper

⊥ for some k ⩾ 1}.

Clearly, ϕ induces a permutation of Uper. By the ϕ-orbits on Uper, we mean the orbits
of the infinite cyclic group acting on Uper via ϕ. Let ol(ϕ) denote the number of ϕ-orbits
of odd length > 1. We call ϕ odd-periodic if all ϕ-periodic points have odd ϕ-periods.

6.2 Animations
An animation of Γ is a partial function V α999K V such that vα ∼ v for all v ∈ V with
vα ̸= ⊥. Equivalently, an animation of Γ is a selector of the adjacency hypergraph Adj(Γ)
(see §3.3). We write Ani(Γ) for the set of all animations of Γ. Let Nil(Γ) and Odd(Γ)
denote the set of nilpotent and odd-periodic animations of Γ, respectively. Let Fix(Γ)
denote the set of those animations α ∈ Ani(Γ) such that every α-periodic point is a fixed
point of α. We clearly have

Nil(Γ) ⊂ Fix(Γ) ⊂ Odd(Γ) ⊂ Ani(Γ).

We write Nilk(Γ), Fixk(Γ), Oddk(Γ), and Anik(Γ) for the respective subsets consisting of
animations of degree k. The following result, proved over the course of this section, is
the key ingredient of all main results of the present article.

Theorem 6.1. Let Γ be a graph and k ⩾ 0. Then:

(i) I−k Γ =
〈
mon(α) : α ∈ Fixk(Γ)

〉
. More precisely, the nonzero minors of C−Γ are

precisely of the form ±mon(α) for α ∈ Fix(Γ).

(ii) 1
2I

+
k Γ =

〈
mon(α) : α ∈ Oddk(Γ)

〉
. More precisely, the nonzero minors of C+

Γ are
precisely of the form ±2ol(α) mon(α) for α ∈ Odd(Γ).

Corollary 6.2. Let Γ = (V, E) be a graph. Then

rkQ(XV )(C−Γ ) = max(k ⩾ 0 : Fixk(Γ) ̸= ∅) = max(deg(α) : α ∈ Fix(Γ)) and
rkQ(XV )(C+

Γ ) = max(k ⩾ 0 : Oddk(Γ) ̸= ∅). = max(deg(α) : α ∈ Odd(Γ)). ♦
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For group-theoretic applications, the ask zeta functions W−
Γ (X, T ) (see Theorem 1.3)

are of particular interest when Γ is loopless.

Corollary 6.3. Let Γ be loopless. Then I−k Γ =
〈
mon(α) : α ∈ Nilk(Γ)

〉
. More precisely,

the nonzero minors of C−Γ are precisely of the form ±mon(α) for α ∈ Nil(Γ).

Proof. If Γ is loopless, then Nil(Γ) = Fix(Γ). Now apply Theorem 6.1(i). ♦

In §6.3 we prove that (suitable) animations give rise to minors of C±Γ , proving “half” of
Theorem 6.1. In Sections 6.4–6.5 we establish the other half by showing that all nonzero
minors of C±Γ arise from suitable animations.

6.3 Animations yield minors
We begin by proving half of Theorem 6.1: we show that if α ∈ Fix(Γ) (resp. α ∈ Odd(Γ)),
then ±2ol(α) mon(α) is a minor of C−Γ (resp. C+

Γ ).

Notation for submatrices and minors of C±Γ . We use the following notation (which
builds upon on that from §5.2) throughout this entire section. Recall that the rows
and columns of C±Γ are indexed by edges and vertices of Γ, respectively. As we are only
interested in minors up to signs, we are free to order vertices and edges as we see fit. If
v1, . . . , vn are the distinct vertices of Γ, then, up to multiplication by ±1, each nonloop
edge {vi, vj} of Γ gives rise to a row Xvibj ± Xvj bi ∈ Z[XV ]n of C±Γ , while each loop
{vi} gives rise to a row Xvibi. Having ordered V , we order E (e.g. lexicographically as
in §3.4) to define C±Γ . Given subsets V ′ ⊂ V and E′ ⊂ E, we then obtain a submatrix
C±Γ [V ′ | E′] of C±Γ obtained by selecting the columns indexed using the elements of V ′

(in their chosen order) and the rows indexed using the elements of E′ (again in their
chosen order). If |V ′| = |E′| = k, then we write m±Γ [V ′ | E′] = det(C±Γ [V ′ | E′]) for the
corresponding k × k minor of C±Γ .

Partitioning vertices using an animation. Let α ∈ Ani(Γ). We describe a canonical
partition of the vertices of Γ which will play a crucial role in our subsequent construction
of a minor of C±Γ related to mon(α).

As in §6.1, let V per ⊂ V (resp. V tra ⊂ V ) be the set of α-periodic (resp. α-transient)
points in V . Let V per

⊥ = ⊔
λ∈Λ Ωλ be the decomposition into orbits of the infinite cyclic

group acting on V per
⊥ via α. We assume that 0 ∈ Λ and Ω0 = {⊥}. We write Λ+ = Λ\{0}

and Nλ = |Ωλ|. By definition, α ∈ Odd(Γ) if and only if each Nλ is odd, in which case
ol(α) = #{λ ∈ Λ : Nλ > 1}. Furthermore, α ∈ Fix(Γ) if and only if Nλ = 1 for all
λ ∈ Λ. Finally, α ∈ Nil(Γ) if and only if Λ = {0}.

By repeated application of α, every transient point v ∈ V tra is moved into precisely
one of the orbits, Ωω(v) say. We let δ(v) be the least positive integer with vα

δ(v) ∈ Ωω(v).
Define Ω(0)

λ = Ωλ and Ω(k+1)
λ = {v ∈ V tra : vα ∈ Ω(k)

λ }. Equivalently, for k ⩾ 1, we have
Ω(k)
λ = {v ∈ V tra : ω(v) = λ and δ(v) = k}. Given λ ∈ Λ, we let κ(λ) be the largest k ⩾ 0
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6 Animations of graphs

with Ω(k)
λ ̸= ∅. We thus obtain a natural partition

V =
⊔
λ∈Λ

κ(λ)⊔
k=0

Ω(k)
λ . (6.1)

Cycle graphs and C+
Γ . Let Ck denote the cycle graph on {1, . . . , k}. Various graph-

theoretic properties and invariants (e.g. chromatic numbers) of Ck depend on the parity
of k. Here, we encounter another instance of this phenomenon: the following elementary
lemma explains the curious role of odd-periodic animations in Theorem 6.1.

Lemma 6.4. Let k ⩾ 3. Then

det(C+
Ck

) =
{
±2X1 · · ·Xk, if k is odd,

0, if k is even.

Proof. We order the vertices 1, . . . , k and the edges as {1, 2}, {2, 3}, . . . , {k− 1, k}, {1, k}.
With respect to these orders, we then have

C+
Γ =


X2 X1

X3 X2
. . . . . .

Xk Xk−1
Xk X1

 .

Laplace expansion along the first column yields det(C+
Γ ) = (1 + (−1)k+1)X1 · · ·Xk. ♦

Order. For each λ ∈ Λ, we may write Ω(0)
λ = {w(λ, 1), . . . , w(λ, Nλ)} where w(λ, i)α =

w(λ, i + 1) for i < Nλ and w(λ, Nλ)α = w(λ, 1). We let ≼ be the total order on Ω(0)
λ

with w(λ, 1) ≺ · · · ≺ w(λ, Nλ). For k = 1, . . . , κ(λ), we choose an arbitrary total order ≼
on Ω(k)

λ . Finally, we choose a total order ≼ on Λ. By (6.1), each point in V corresponds
uniquely to a triple (λ, k, u), where λ ∈ Λ, k ∈ {0, . . . , κ(λ)}, and u ∈ Ω(k)

λ . By ordering
these triples lexicographically, we obtain a total order ≼ on V .

Building a minor from an animation. Suppose that α ∈ Odd(Γ) (resp. α ∈ Fix(Γ)).
Define V ′ = D(α) and E′ = {{v, vα} : v ∈ V ′}. We show that |V ′| = |E′| and that the
minor m+

Γ [V ′ | E′] (resp. m−Γ [V ′ | E′]) is given by ±2ol(α) mon(α).
The map V ′

Φ−→ E′ which sends v to {v, vα} is onto by construction. Suppose that
{u, uα} = {v, vα} for u, v ∈ D(α). If u ̸= v, then uα = v and vα = u whence {u, v} is an
orbit of even length, which contradicts α ∈ Odd(Γ). Hence, Φ is bijective and |V ′| = |E′|.
By transport of structure via Φ, our existing total order on V ′ induces a total order on
E′ which we arbitrarily extend to a total order on all of E.
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6 Animations of graphs

Note that V \ V ′ = Ω(1)
0 = {v ∈ V tra : vα = ⊥}. We may write V ′ = ⊔

λ∈Λ V ′λ, where

V ′λ =


⊔κ(λ)
k=2 Ω(k)

λ , if λ = 0,⊔κ(λ)
k=0 Ω(k)

λ , otherwise;

note that V ′0 might be empty but V ′λ ̸= ∅ for λ ∈ Λ+. (The case Λ+ = ∅ is possible.)
Let E′λ denote the image of V ′λ under the bijection Φ; hence, E′ = ⊔

λ∈Λ E′λ. For each
λ ∈ Λ, the endpoints of every edge in E′λ belong to V ′λ except when λ = 0 and the edge
is of the form {v, vα} for v ∈ Ω(2)

0 ; in the latter case, vα ∈ Ω(1)
0 and thus vα /∈ V ′. We

thus see that C±Γ [V ′ | E′] is lower block triangular with diagonal blocks given by the
C±Γ [V ′λ | E′λ]. In particular, m±Γ [V ′ | E′] = ∏

λ∈Λ m±Γ [V ′λ | E′λ]. We will further elucidate
the block triangular structure in the following.

We let D
(i)
λ denote the |Ω(i)

λ | × |Ω
(i)
λ | diagonal matrix whose diagonal entries are given

by the Xvα as v ranges over Ω(i)
λ .

Nilpotent points (λ = 0). Assuming that V ′0 ̸= ∅, let us consider the case λ = 0. By
applying Φ, the decomposition V ′0 = ⊔κ(0)

k=2 Ω(k)
0 yields a corresponding decomposition

of E′0. As we observed before, if v ∈ Ω(2)
0 , then ⊥ ̸= vα /∈ V ′. Viewing the rows of

C±Γ [V ′0 | E′0] as elements of Z[XV ′
0
]E′0 and up to signs, the row corresponding to the edge

{v, vα} associated with v ∈ Ω(2)
0 is therefore simply Xvαbv. Next, if v ∈ Ω(k)

0 for k ⩾ 3,
then vα ≺ v and the row corresponding to the edge {v, vα} is Xvαbv ±Xvbvα (up to the
sign). The submatrix C±Γ [V ′0 | E′0] is therefore of the form

D
(2)
0
∗ D

(3)
0

. . . . . .

 .

Hence, m±Γ [V ′0 | E′0] = ∏
v∈V ′

0

Xvα = mon(α ↾ V ′0).

Fixed points. Next, let λ ∈ Λ+ with Nλ = 1. In other words, Ωλ = {uλ} consists of a
fixed point uλ of α distinct from ⊥. Arguing analogously to before, here we find that the
submatrix C±Γ [V ′λ | E′λ] is of the form

Xuλ

∗ D
(1)
λ

∗ D
(2)
λ

. . . . . .

 .

The first row corresponds to the loop {uλ} = uΦ
λ . Hence, we again find that m±Γ [V ′λ |

E′λ] = ∏
v∈V ′

λ

Xvα = mon(α ↾ V ′λ).
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6 Animations of graphs

General periodic points, +-case. Let λ ∈ Λ+ with Nλ > 1. As α ∈ Odd(Γ), we
know that Nλ ⩾ 3 is odd. In this case, we only need to consider the “positive minor”
m+

Γ [V ′λ | E′λ]. (This is because we assume that α ∈ Nil(Γ) in the −-case. We note that
Corollary 6.9 below will imply that m−Γ [V ′λ | E′λ] = 0 if Nλ > 1.)

Recall that Ω(0)
λ = {w(1, λ), . . . , w(Nλ, λ)}. We abbreviate wi = w(i, λ) and N = Nλ.

Proceeding as above, we now find that C+
Γ [V ′λ | E′λ] is of the form

C

∗ D
(1)
λ

∗ D
(2)
λ

. . . . . .

 ,

where C is the matrix

C =


Xw2 Xw1

Xw3 Xw2
. . . . . .

XwN XwN−1

XwN Xw1

 .

By Lemma 6.4, we have det(C) = ±2Xw1 · · ·Xwk
whence m±Γ [V ′λ | E′λ] = ±2 ∏

v∈V ′
λ

Xvα =

mon(α ↾ V ′λ).

Conclusion. In summary, we have shown the following.

Proposition 6.5.

(i) If α ∈ Fix(Γ) (in which case Nλ = 1 for all λ ∈ Λ), then m−Γ [V ′ | E′] = ±mon(α).

(ii) If α ∈ Odd(Γ) (in which case each Nλ is odd), then m+
Γ [V ′ | E′] = ±2ol(α) mon(α).

♦

It remains to show that, conversely, every minor m±Γ [V ′ | E′] given by V ′ ⊂ V and
E′ ⊂ E with |V ′| = |E′| is either zero, or given by ±2ol(α) mon(α) for a suitable animation,
according to the two cases in Theorem 6.1.

6.4 Minors yield animations: the connected and nondegenerate case
Let E′ ⊂ E and V ′ ⊂ V with |V ′| = |E′|. Suppose that H′ = H[V ′ | E′] is connected and
nondegenerate so that Lemma 5.6 is applicable. We show that the minor m±Γ [V ′ | E′]
arises from a judiciously chosen animation of Γ. In showing this, we distinguish two cases
reflecting the two conditions (U1) and (U2) in Lemma 5.6.
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6 Animations of graphs

6.4.1 Case (U2): a decorated tree

Animations from rooted trees. Let T a tree on the vertex set V with chosen root
r ∈ V . Let dT(u, v) denote the distance between the vertices u and v in T, i.e. the length
of the unique path from u to v in T. By a distance order of T with respect to r, we
mean a total order ≼ on V such that whenever dT(r, u) < dT(r, v) for u, v ∈ V , then we
have u ≺ v. Let V

pred(T,r)
999999999999K V be the partial function defined on V \ {r} which sends

each v ∈ V \ {r} to its predecessor on the unique path from r to v. Clearly, pred(T, r) is
a nilpotent animation of T. By construction, we have dT(vpred(T,r), r) < dT(v, r) for all
v ∈ V ′ \ {r}. By minor abuse of notation, we regard animations of subgraphs of Γ, such
as pred(T, r) when T is a spanning tree of Γ, as animations of Γ.

Suppose that we are in case (U2) of Lemma 5.6. Let e◦ ∈ E′ be the unique loop of H′.
By Lemma 5.6, T = (V ′, E \ {e◦}) is a subtree of Γ. While e◦ is a loop of H′, it may or
may not be a loop of H (equivalently: Γ). We consider these two cases in turn.

Subcase: e◦ is a nonloop of H. In this case, e◦ has two distinct endpoints in H but
only one of these belongs to V ′. That is, e◦ = {u, r} where u ∈ V ′ and r ∈ V \ V ′. As
T is a tree so is then the subgraph T′ = (V ′ ∪ {r}, E′) of Γ. The nilpotent animation
pred(T′, r) of T′ and Γ turns out to give rise to the minor m±Γ [V ′ | E′]:

Lemma 6.6. m±Γ [V ′ | E′] = ±mon(pred(T′, r)).

Proof. Let ≼ be a distance order of T′ with respect to r. We arbitrarily extend ≼ to
a total order on V (denoted using the same symbol). Let V ′i denote the subset of V ′

consisting of vertices of distance i from r in T′. Given ≼, we order E lexicographically as
in §3.4. Write α = pred(T′, r). With respect to these orders, up to changing the signs of
rows, the submatrix C±Γ [V ′ ∪ {r} | E′] is of the form

∗ D1
∗ D2

. . . . . .

 ,

where the column groups consist of 1, |V ′1 |, |V ′2 |, . . . columns, respectively, and Di is the
diagonal matrix with diagonal entries given by the Xvα as v ranges over V ′i (in the given
order). That is, if V ′i consists of vi1 ≺ vi2 ≺ · · ·, then Di = diag(Xvα

i1
, Xvα

i2
, . . . ). The claim

follows by deleting the first column and taking the determinant to obtain m±Γ [V ′ | E′]. ♦

Subcase: e◦ is a loop of H. In this case, e◦ = {r} for r ∈ V ′. Using our notation
from §4, we may regard pred(T, r)[r ← r], the partial function which agrees with pred(T, r)
except that it sends r to itself, as an element of Fix(Γ).

Lemma 6.7. m±Γ [V ′ | E′] = ±mon(pred(T, r)[r ← r]).
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6 Animations of graphs

Proof. Similarly to the proof of Lemma 6.6, let ≼ be a distance order of T with respect
to r and extend this to a total order on V . We again order edges lexicographically.

Write α = pred(T, r). Let V ′i denote the set of all vertices in V ′ of distance i from r.
Let Di be the diagonal matrix with entries Xvα as v ranges over V ′i (in the given order).
Then the submatrix C±Γ [V ′ | E′] is of the form

Xr

∗ D1
∗ D2

. . . . . .

 ,

where the first row corresponds to e◦. We thus obtain

m±Γ [V ′ | E′] = ±Xr det(D1) det(D2) · · · = ±Xr mon(α) = ±mon(α[r ← r]). ♦

6.4.2 Case (U1): a unicyclic graph

Suppose that we are in case (U1) of Lemma 5.6. Then Γ = (V ′, E′) is a unicyclic loopless
graph. The matrices C+

Γ and C−Γ behave quite differently in this case.

Lemma 6.8. If Λ is a loopless graph with k vertices and k edges, then det(C−Λ) = 0.

Proof. We may assume that 1, . . . , k are the vertices of Λ. As Λ is loopless, every row of
C−Λ is of the form Xibj −Xjbi. In particular, C−Λ [X1, . . . , Xn]⊤ = 0. ♦

Corollary 6.9. In case (U1) of Lemma 5.6, we have m−Γ [V ′ | E′] = 0. ♦

Let now Γ′ = (V ′, E′) be a unicyclic loopless subgraph of Γ. Clearly, this forces |V ′| ⩾ 3.
Let u1, . . . , ur with r ⩾ 3 be distinct vertices in V ′ with u1 ∼ u2 ∼ · · · ∼ ur ∼ u1 in Γ′.
Let U = {u1, . . . , ur}. That is, U is the vertex set of the unique cycle within Γ′. Let
T = Γ′/U be the tree obtained from Γ′ by contracting all the ui to a single vertex U (and
deleting all edges on the cycle formed by U).

We order the vertices in V ′ \ U by means of a distance order of T with respect to
the root U . We further order the elements of U as written above, with each of them
preceding each element of V ′ \ U . Next, we extend our order to a total order on V and
we order E lexicographically.

We now construct an animation V
α−→ V defined on V ′ as follows. As Γ′ is unicyclic,

for each v ∈ V ′ \U , there exists a unique shortest path from some vertex in U to v. This
path can be obtained from the unique path from U to v in T. For v ∈ V ′ \ U , we define
vα to be the predecessor of v on the aforementioned unique path to v. Next, we define
uαi = ui+1 for i < r and uαr = u1. Clearly, α is an animation of Γ. Intuitively, α cyclically
permutes the vertices in U (having arbitrarily oriented the cycle above) and it moves
vertices in V ′ \ U towards U .
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6 Animations of graphs

Let V ′i denote the set of all vertices in V ′ of distance i from U . Let Di be the diagonal
matrix with entries Xvα as v ranges over V ′i (in the given order). We then have

C+
Γ [V ′ | E′] =


C

∗ D1
∗ D2

. . . . . .

 ,

where C is equivalent (up to relabelling of variables) to C+
Cr

. By construction and
Lemma 6.4, we obtain the following.
Lemma 6.10.

(i) If the length r of the unique cycle in Γ′ is even, then m+
Γ [V ′ | E′] = 0.

(ii) If r is odd, then m+
Γ [V ′ | E′] = ±2 mon(α) and α ∈ Odd(Γ). ♦

6.5 Minors yield animations: the general case
Let Γ = (V, E) be a graph and let H = Inc(Γ) be its incidence hypergraph. Let E′ ⊂ E
and V ′ ⊂ V with |V ′| = |E′| = k. We are now ready to complete the proof of the
remaining half of Theorem 6.1.
Proposition 6.11.

(i) If m−Γ [V ′ | E′] ̸= 0, then there exists α ∈ Fix(Γ) with m−Γ [V ′ | E′] = ±mon(α).

(ii) If m+
Γ [V ′ | E′] ̸= 0, then there exists α ∈ Odd(Γ) with m+

Γ [V ′ |E′] = ±2ol(α) mon(α).
Proof. Suppose that m±Γ [V ′ | E′] ̸= 0. By Lemma 5.3, we may assume that H′ := H[V ′ |
E′] is nondegenerate. Next, we decompose H′ = H′1⊕ · · ·⊕H′c into connected components
as in §5.2.

Writing H′j = H′[V ′j | E′j ], Lemma 5.4 shows that each H′j is square. Our results in §6.4
show that for j = 1, . . . , c, we may construct an explicit animation αj ∈ Fix(Γ) (resp.
α ∈ Odd(Γ)) with m−Γ [V ′j | E′j ] = ±mon(αj) (resp. m+

Γ [V ′j | E′j ] = ±2ol(αj) mon(αj)).
(We note that in the “+-case”, we have ol(αj) ∈ {0, 1}. Namely, ol(αj) = 0 if αj is
obtained via Lemma 6.6 or Lemma 6.7 and ol(αj) = 1 if αj arises via Lemma 6.10.

Using our specific constructions of the αj , the domain of definition D(αj) is contained
in V ′j . We may thus define a partial function V ′

α−→ V ′ which agrees with αj on V ′j for
j = 1, . . . , c. Clearly, α ∈ Fix(Γ) (resp. α ∈ Odd(Γ)) if all αj satisfy αj ∈ Fix(Γ) (resp.
αj ∈ Odd(Γ)). Moreover, ol(α) = ol(α1) + · · ·+ ol(αc). The claim thus follows since

m±Γ [V ′ | E′] = ±
c∏
j=1

m±Γ [V ′j | E′j ] = ±
c∏
j=1

2ol(αj) mon(αj) = ±2ol(α) mon(α). ♦

Proof of Theorem 6.1. Combine Proposition 6.5 and Proposition 6.11. ♦

New proof of Theorem 1.3(ii)–(iii). Combine Proposition 2.3, Proposition 3.4, and The-
orem 6.1. For Theorem 1.3(ii), the base ring is R = Z[1/2]; for Theorem 1.3(ii), it is
R = Z. ♦
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7 The Reflexive Graph Modelling Theorem

7 The Reflexive Graph Modelling Theorem
In this section, we prove Theorem B by showing that, assuming that Γ is reflexive,
the matrices C±Γ and CAdj(Γ) have the same rank (over Q(XV )) and the same ideals of
minors (in Z[1

2 ][XV ] in the +-case and in Z[XV ] otherwise). All of this relies on our
parameterisation of minors in terms of selectors and animations developed in §4 and §6.

7.1 The ranks of CH and C±Γ
Proposition 7.1. Let H = (V, E, ı) be a hypergraph. Then

rkQ(XV )(CH) = #{e ∈ E : ∥e∥H ̸= ∅}.

Proof. By Corollary 4.2, rkQ(XV )(CH) = max(deg(ϕ) : ϕ ∈ Sel(H)). Clearly, the degree
of every selector of H is at most |E| − |emp(H)| and this bound is attained. ♦

Proposition 7.2. Let Γ = (V, E) be a graph with n vertices. Let d be the number
of connected components of Γ that do not contain a loop. Then Fixn−d(Γ) ̸= ∅ but
Fixn−d+1(Γ) = ∅. In particular, rkQ(XV )(C−Γ ) = n− d.
Proof. This easily reduces to the case that Γ is connected, which we now assume. Our
arguments in §6.4.1 show that Fixn−1(Γ) ̸= ∅. Indeed, every choice of a spanning tree T
of Γ and root r ∈ V gives rise to a (nilpotent) animation pred(T, r) of Γ. The domain
of such an animation is V \ {r} whence ∅ ≠ Niln−1(Γ) ⊂ Fixn−1(Γ). As every nilpotent
animation of Γ is necessarily undefined somewhere, we have Niln(Γ) = ∅. Hence, if Γ is
loopless (equivalently: d = 1), then Fixn(Γ) = Niln(Γ) = ∅. On the other hand, if r ∈ V
with r ∼ r, then d = 0 and pred(T, r)[r ← r] ∈ Fixn(Γ), where T is a spanning tree of Γ
as above. Of course, since the domain of any animation of Γ is a subset of V , we have
Fixn+1(Γ) = ∅. The final claim follows from Corollary 6.2. ♦

Corollary 7.3. Let Γ be a loopless graph with n vertices and c connected components.
Then Niln−c(Γ) ̸= ∅ but Niln−d+1(Γ) = ∅. In particular, rkQ(XV )(C−Γ ) = n− c. ♦

Remark 7.4. The final part of Corollary 7.3 can also be deduced from [15, Lem. 3.2].
Proposition 7.5. Let Γ = (V, E) be a graph with n vertices. Let d be the num-
ber of connected components of Γ that do not contain an odd cycle; here, loops are
counted amongst odd cycles. Then Oddn−d(Γ) ̸= ∅ but Oddn−d+1(Γ) = ∅. In particular,
rkQ(XV )(C+

Γ ) = n− d.
Proof. As in the proof of Proposition 7.2, we may assume that Γ is connected and we
find that ∅ ≠ Niln−1(Γ) ⊂ Oddn−1(Γ) and Niln(Γ) = ∅. If Γ does not contain any cycles
of odd length, then d = 1 and Oddn(Γ) = Niln(Γ) = ∅. If Γ contains a loop, then we can
show that Fixn(Γ) ̸= ∅ as in the proof of Proposition 7.2. Finally, if Γ contains a cycle of
odd length which is not a loop, then we can construct α ∈ Oddn(Γ) using the procedure
from §6.4.2. As before, Oddn+1(Γ) = ∅ and the final claim follows from Corollary 6.2. ♦

Corollary 7.6. Let Γ = (V, E) be a reflexive graph with n vertices. Then

rkQ(XV )(C+
Γ ) = rkQ(XV )(C−Γ ) = rkQ(XV )(CAdj(Γ)) = n. ♦
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8 Nilpotent animations

7.2 Proof of Theorem B
Lemma 7.7. Let Γ be a reflexive graph. Let α ∈ Ani(Γ). Then there exists β ∈ Fix(Γ)
with mon(α) = mon(β).

Proof. Let V per denote the set of α-periodic points. Let l(α) be the number of α-orbits
of size > 1 on V per. We proceed by induction on l(α). If l(α) = 0, then α ∈ Fix(Γ) so
we may take β = α. Next, let l(α) > 0. Then we can find r ⩾ 2 and distinct points
u1, . . . , ur ∈ V with uαi = ui+1 for i < r and uαr = u1. Using the notation from §4, define

α′ = α[u1 ← u1, . . . , ur ← ur].

Since Γ is reflexive, α′ ∈ Ani(Γ). By construction, mon(α′) = mon(α) and l(α′) < l(α)
whence the claim follows by induction. ♦

Proof of Theorem B. Let Γ have n vertices. Fix a compact DVR O with odd residue
characteristic. Let s ∈ C with Re(s) > n be arbitrary. By combining Proposition 2.2,
Corollary 7.6, Lemma 7.7, Proposition 4.1, and Theorem 6.1, we see that each of

(1− q−s)W±
Γ (q, q−s) = (1− q−s)ζask

A±
Γ /O

(s)

and
(1− q−s)WAdj(Γ)(q, q−s) = (1− q−s)ζask

AAdj(Γ)/O
(s)

is given by

1 + (1− q−1)−1
∫

(OV )××P

|z|s−1
n∏
i=1

∥Ii−1(x)∥
∥Ii(x) ∪ zIi−1(x)∥ dµ(x, z),

where Ik = ⟨mon(α) : α ∈ Fixk(Γ)⟩. (Recall that Ani(Γ) = Sel(Adj(Γ)).) ♦

8 Nilpotent animations
Proposition 3.4 and Corollary 6.3 suggest that by studying the nilpotent animations of a
loopless graph Γ, we might learn something about the rational functions W−

Γ (X, T ). In
this section, we develop basic tools for working with and modifying nilpotent animations.

8.0 Nilpotent animations and in-forests
Nilpotent animations can be equivalently described in terms of in-forests. While this
description is not logically required in the following, we include it for the benefit of
readers who appreciate helpful pictures in graph-theoretic papers.
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In-forests. The following is folklore. Let Γ = (V, E) be a graph. An orientation of Γ
is pair (s, t) of functions E → V such that e = {s(e), t(e)} for all e ∈ E. We call s(e) and
t(e) the source and target of e, respectively. The outdegree outdegΓ(v) of a vertex
v ∈ V is the number of edges e ∈ E with s(e) = v. A vertex v with outdegΓ(v) = 0 is
a sink. An oriented graph is a graph endowed with an orientation. A forest is an
acyclic loopless graph. An in-forest is an oriented forest Φ with outdegΦ(v) ⩽ 1 for each
vertex v of Φ. An in-tree is a connected in-forest. Every in-tree contains a unique sink.

An in-forest structure on a given forest is equivalently described by a choice of sinks, one
from each connected component. In detail, let Φ = (V, E) be a forest. Let V = V1⊔· · ·⊔Vc
be the decomposition of V into the connected components of Φ. For i = 1, . . . , c, choose
si ∈ Vi. For each v ∈ Vi \ {si}, there exists a unique path from v to si in Φ. We endow Φ
with an orientation as follows: for each v ∈ V , say v ∈ Vi, consider the unique path from
v to si in Φ and orient all edges on this path towards si. This turns Φ into an in-forest
whose sinks are precisely the si. Conversely, all in-forest structures on Φ arise in this
fashion; cf. [18, Prop. 7.6].

Given an arbitrary graph Γ = (V, E), by an in-forest in Γ, we mean an in-forest
whose underlying forest is a subgraph of Γ with vertex set V . Hence, an in-forest in Γ
uniquely determines and is uniquely determined by to two pieces of data:

• an acyclic set of edges E′ ⊂ E and

• a choice of sinks, one from each connected component of the forest (V, E′).

Nilpotent animations of Γ and in-forests in Γ. Let Γ = (V, E) be a graph with n
vertices. As we explain in the following, nilpotent animations of Γ and in-forests in Γ
are naturally in bijection. Very briefly, given α ∈ Nil(Γ), an identity vα = w (where
v, w ∈ V ) corresponds to an oriented edge v → w in the in-forest attached to α.

In greater detail, suppose that Φ = (V, E′) is an in-forest in Γ with orientation (s, t).
Define α ∈ Ani(Γ) as follows. For v ∈ V , we have outdegΦ(v) ∈ {0, 1}. If outdegΦ(v) = 0,
then we let vα = ⊥. Otherwise, there exists a unique edge ev ∈ E′ with s(ev) = v. We
then let vα = t(ev). As Φ is acyclic, it follows easily that α is a nilpotent animation of Γ.

Conversely, let α ∈ Nil(Γ). Define E′ = {{v, vα} : v ∈ D(α)} ⊂ E. Then Φ := (V, E′)
is a forest. Each connected component of Φ contains a unique vertex v with vα = ⊥.
Hence, by taking the elements of V \D(α) as our sinks, we turn Φ into an in-forest in Γ.

The preceding two constructions yield mutually inverse bijections between in-forests
in Γ and nilpotent animations of Γ. If α ∈ Nil(Γ) has degree k, then the corresponding
in-forest has precisely n− k connected components. The monomial associated with an
in-forest is the product of the variables attached to the targets of its edges.

Example 8.1. Consider the following graph:

Γ:

v1 v2 v3 v4

v5 v6 v7 v8
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8 Nilpotent animations

The following is an in-forest in Γ. Here, oriented edges belong to Φ while dashed ones
belong to Γ but not to Φ.

Φ:

v1 v2 v3 v4

v5 v6 v7 v8

The sinks v4, v5, and v6 of Φ are drawn as squares in inverted colours. The nilpotent
animation α corresponding to Φ is given by vα1 = vα3 = v2, vα2 = vα7 = v6, vα8 = v4, and
vα4 = vα5 = vα6 = ⊥.

8.1 Using animations to order vertices
Let Γ = (V, E) be a graph. Let α ∈ Ani(Γ). Define a binary relation ≺·α on V by
letting v ≺·α w if and only if w = vα for v, w ∈ V . (Note that v ≺·α w forces vα ̸= ⊥.)
Let ≼α be the reflexive transitive closure of ≺·α. Then ≼α is a preorder on V . Given
v, w ∈ V , we have v ≼α w if and only if there exists n ⩾ 0 with vα

n = w. For v ∈ V , let
Lα(v) = {w ∈W : w ≼α v} be the associated lower set. We record some basic properties
of ≼α. Recall that given a preorder ⊑, an element x is maximal if x ⊑ y implies y ⊑ x.

Proposition 8.2. Let Γ = (V, E) be a graph, α ∈ Ani(Γ), and v, w ∈ V . Then:

(i) v is a ≼α-maximal element of V if and only if vα = ⊥ or v is an α-periodic point.

(ii) v and w are ≼α-comparable if and only if Lα(v) ∩ Lα(w) ̸= ∅.

(iii) The preorder ≼α is a partial order if and only if α ∈ Fix(Γ). If Γ is loopless, then
the latter condition is equivalent to α ∈ Nil(Γ).

(iv) If α ∈ Nil(Γ), then ≺·α is the covering relation associated with ≼α.

(v) Suppose that α ∈ Fix(Γ). Then, given v ∈ V , there exists a unique ≼α-maximal
element z ∈ V with v ≼α z.

Proof. (i) Clear. (ii) If v ≼α w, say, then v ∈ Lα(v) ∩ Lα(w). Conversely, suppose that
r ∈ Lα(v) ∩ Lα(w). Then there are m, n ⩾ 0 with v = rα

m and w = rα
n . Suppose,

without loss of generality, that m ⩽ n. Then w = vα
n−n and therefore v ≼α w. (iii) Clear.

(iv) Clear. (v) Given v, there exists a least n ⩾ 0 such that α sends z := vα
n to ⊥ or to

itself. Then z is ≼α-maximal with v ≼α z. The uniqueness of z follows from (ii)–(iii). ♦

In the setting of Proposition 8.2(v), we write lastα(v) = z, where z is the unique
≼α-maximal element of V with v ≼α z. Recall from §4 that D(α) denotes the domain of
definition of α. Given a nilpotent animation α of Γ = (V, E), the ≼α-maximal elements
are precisely the elements of V \D(α). We thus have the following.

Lemma 8.3. Let Γ = (V, E) be a graph with n vertices. Let α ∈ Nilk(Γ). Then the
number of ≼α-maximal elements of V is n− k. ♦
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8 Nilpotent animations

8.2 New nilpotent animations from old ones, I
Let Γ = (V, E) be a loopless graph. In the next section, we will carry out various types
of manipulations applied to nilpotent animations with the goal of optimising various
parameters. The following two lemmas are basic steps of these manipulations. The first
lemma tells us precisely when redefining (or extending) a nilpotent animation gives rise
to an animation which is again nilpotent. Recall that ∼ indicates adjacency in graphs.

Lemma 8.4 (Redefining nilpotent animations: minor surgery). Let α ∈ Nil(Γ). Let
v, w ∈ V with v ∼ w. Let β = α[v ← w] ∈ Ani(Γ). (We emphasise that we do not require
that vα ̸= ⊥ so β might be an extension of α.) Then β ∈ Nil(Γ) if and only if w $α v.

Proof. First note that since Γ is loopless and v ∼ w, we have v ̸= w. We will prove the
lemma through a series of auxiliary claims and steps.

(a) We first claim that β /∈ Nil(Γ) if and only if v is β-periodic.
Clearly, if v is β-periodic, then β /∈ Nil(Γ). Conversely, suppose that β /∈ Nil(Γ).
Then there exists a β-periodic vertex, u ∈ V say. Let k ⩾ 1 with uα

k = u. Since
α ∈ Nil(Γ), the vertex u is not α-periodic. We conclude that the sequence

u, uβ, uβ
2
, . . . , uβ

k−1
, uβ

k = u

must contain v. In particular, v is β-periodic.

(b) Next, we note that v is β-periodic if and only if w ≼β v. Indeed, as vβ = w, we
see that v is β-periodic if and only if repeated application of β takes w to v or,
equivalently, w ≼β v.

(c) We claim that if w ≼β v, then also w ≼α v.

Suppose that w ≼β v. Let k ⩾ 0 be minimal with v = wβk . Since v ̸= w, we have
k ⩾ 1. By the minimality of k, each of w, wβ, . . . , wβk−1 is distinct from v. Thus, β
acts like α on these points whence w ≼α v.

(d) Suppose that w ≼α v. By construction, β acts like α on the points w, wα, . . .
preceding v. Hence, w ≼β v ≼β w whence β /∈ Nil(Γ) by Proposition 8.2(iii). This
proves the “only if” part.

(e) Suppose that w $α v. By step (c), we then have w $β v. By step (b), v is then not
β-periodic whence β ∈ Nil(Γ) follows from step (a). This proves the “if part”. ♦

Remark 8.5. Expressed in the language of in-forests from §8.0, Lemma 8.4 asserts the
following. Let Φ be an in-forest in Γ. Let v and w be adjacent vertices of Γ. Let Φ′ be
the oriented graph obtained from Φ by deleting, if it exists, the (necessarily unique) edge
with source v and by inserting an oriented edge v → w. Then Φ′ is an in-forest if and
only if Φ does not contain a directed path from w to v.
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Given a nilpotent animation α with vα = w, let z = lastα(w). Suppose that w ̸= z and
v ∼ z ∼ w. Then the following lemma allows us to construct an explicit β ∈ Nil(Γ) with
v ≺·β z ≺·β w and such that mon(α) = mon(β).

Lemma 8.6 (Redefining nilpotent animations: bypass surgery I). Let α ∈ Nil(Γ). Let
v, w, y, z ∈ V with zα = ⊥. Suppose that

v ≺·α w ≼α y ≺·α z

and v ∼ z ∼ w. (Note that then necessarily #{v, y, z} = 3.) Let

β = α[v ← z, y ← ⊥, z ← w].

Then β ∈ Nil(Γ) and mon(α) = mon(γ).

Proof. This follows by repeated application of Lemma 8.4 as follows. First, let α′ = α[v ←
⊥, y ← ⊥]. As α belongs to Nil(Γ), so does α′. Note that v, y, and z are distinct ≼α′-
maximal elements of V . By construction, we have w ≼α′ y. Proposition 8.2(v) thus shows
that w $α′ z. Lemma 8.4 therefore shows that α′′ = α′[z ← w] ∈ Nil(Γ). Next, v and y
are distinct ≼α′′-maximal elements of V and z ≼α′′ y. Again, Proposition 8.2(v) shows
that z $α′′ v. By applying Lemma 8.4 to α′′, we thus obtain β = α′′[v ← z] ∈ Nil(Γ). ♦

Remark 8.7. In terms of in-forests, Lemma 8.6 asserts the following. We use the same
notation as in Example 8.1. Suppose that the following is part of an in-forest Φ in Γ.

v w . . . y z

Suppose that v ∼ z ∼ w. Then the oriented graph obtained from Φ by rerouting as
follows is an in-forest in Γ with the same associated monomial as Φ.

v w . . . y z

8.3 Ordering monomials relative to a point
In addition to the partial orders ≼α associated with nilpotent animations α from §8.1,
we also consider partial orders ≼u defined by a choice of a distinguished vertex u.

Let V be a finite set. Recall that O denotes a compact DVR as in §1.12. Following
[18, §4.2], for a subset S⊂ RV , we write S(O) = {x ∈ OV : ν(x) ∈ S}. We let · denote
the inner product x · y = ∑

v∈V
xvyv on RV . Recall that the dual cone of S⊂ RV is

S∨ = {x ∈ RV : x · y ⩾ 0 for all y ∈ S} .
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Let u ∈ V . Define

CuV = {x ∈ R⩾0V : xu ⩽ xv for all v ∈ V }

We define a binary relation ≼u on ZV by letting a ≼u b if and only if b− a ∈ (CuV )∨.

Proposition 8.8.

(i) ≼u is a partial order on ZV .

(ii) Let a, b ∈ ZV with a ≼u b. Let x ∈ CuV (O). Then xb/xa ∈ O.

(iii) Let a, b ∈ ZV with av ⩽ bv for all v ∈ V \ {u} and au ⩽ bu + ∑
v∈V \{u}

(bv − av).

Then a ≼u b.

Proof.

(i) Only the antisymmetry of ≼u needs a justification. Suppose that a ∈ ZV with
a,−a ∈ (CuV )∨. Since bv ∈ CuV for v ∈ V \{u}, we have av = 0 for all v ∈ V \{u}.
Next, z := ∑

v∈V bv ∈ CuV and thus au = a · z = 0.

(ii) For every c ∈ ZV , we have ν(xc) = ν(x) · c. Hence, if a ≼u b, then ν(xb−a) =
ν(x) · (b− a) ⩾ 0 whence ν(xa) ⩽ ν(xb).

(iii) Let x ∈ CuV be arbitrary. Then

(au − bu)xu ⩽
∑

v∈V \{u}
(bv − av)xu ⩽

∑
v∈V \{u}

(bv − av)xv

whence (b− a) · x ⩾ 0. Thus, b− a ∈ (CuV )∨. ♦

We also write ≼u for the partial order on Laurent monomials in XV given by Xa ≼u Xb

if and only if a ≼u b.

Proposition 8.9. Let u ∈ V .

(i) Let w ∈ V . Let m be an arbitrary Laurent monomial in XV . Then Xum ≼u Xwm.
In particular, XuX−1

w m ≼u m.

(ii) Let O be a compact DVR. Let x ∈ OV with ν(xu) ⩽ ν(xv) for all v ∈ V and such
that

∏
v∈V

xv ̸= 0. Let e, f ∈ N0V with Xe
V ≼u Xf

V . Then xe | xf .

Proof.

(i) We may assume that u ̸= w. Write m = Xe
V for e ∈ ZV . Let a = bu + e and

b = bw + e. Then
• av = bv for all v ∈ V \ {u, w},
• au = eu + 1,
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8 Nilpotent animations

• bu = eu,
• bw = aw + 1, and
• au = eu + 1 = bu + ∑

v∈V \{u}
(bv − av).

By Proposition 8.8(iii), a ≼u b and thus Xum = Xa
V ≼u Xb

V = Xwm. The final
claim follows by replacing m by X−1

w m.

(ii) We have ν(x) ∈ CuV (O) and xe, xf ∈ O \ {0}. The claim thus follows from
Proposition 8.8(ii). ♦

8.4 New nilpotent animations from old ones, II
Let Γ = (V, E) be a loopless graph. We record two lemmas in the spirit of Lemmas 8.4–8.6,
but with the relation ≼u in place of equality of monomials.

Lemma 8.10 (Redefining nilpotent animations: rerouting). Let α ∈ Nil(Γ). Let u, v, z ∈
V with u ≼α v ≺α z and zα = ⊥. Suppose that u ∼ z. Let β = α[v ← ⊥, z ← u]. Then
β ∈ Nil(Γ), deg(β) = deg(α), and mon(β) ≼u mon(α).

Proof. Let α′ = α[v ← ⊥]. Then u ≼α′ v and since v and z are distinct ≼α′-maximal
elements of V , Proposition 8.2(v) implies that u $α′ z. Lemma 8.4 thus shows that
β = α′[z ← u] = α[v ← ⊥, z ← u] ∈ Nil(Γ) and deg(α) = deg(β). By Proposition 8.9(i),
mon(β) = XuX−1

vα mon(α) ≼u mon(α). ♦

Remark 8.11. In terms of in-forests, Lemma 8.10 asserts the following. Suppose that
the following is part of an in-forest Φ in Γ and that u ∼ z.

u . . . v . . . z

Then the oriented graph Φ′ obtained from Φ by rerouting as follows is an in-forest in Γ
whose associated monomial is less than or equal w.r.t. u than the monomial of Φ and of
the same degree.

u . . . v . . . z

Lemma 8.12 (Redefining nilpotent animations: bypass surgery II). Let α ∈ Nil(Γ). Let
u, i, v, z ∈ V with iα = v and zα = ⊥. Suppose that

u ≼α i ≺·α v ≺α z

and u ∼ v ∼ z. (Note that then necessarily #{i, v, z} = 3.) Let

β = α[i← ⊥, v ← u, z ← v].

Then β ∈ Nil(Γ), deg(β) = deg(α), and mon(β) ≼u mon(α).
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9 Animations of joins of graphs

Proof. Like Lemma 8.6, this also follows by repeated application of Lemma 8.4. First, let
α′ = α[i← ⊥, v ← ⊥]. Then i, v, and z are distinct ≼α′-maximal elements of V . As in the
proof of Lemma 8.6, we find that u $α′ v whence α′′ = α′[v ← u] ∈ Nil(Γ). Since i and z
are distinct ≼α′′-maximal elements with v ≼α′′ u ≼α′′ i, we obtain β = α′′[z ← v] ∈ Nil(Γ).
Clearly, deg(α) = deg(β). Finally, by Proposition 8.9(i),

mon(β) = XuXv

XiαXvα
mon(α) = Xu

Xvα
mon(α) ≼u mon(α). ♦

Remark 8.13. In terms of in-forests, Lemma 8.6 asserts the following. Suppose that
the following is part of an in-forest Φ in Γ and that u ∼ v ∼ z.

u . . . i v . . . z

Then the oriented graph Φ′ obtained from Φ by rerouting as follows is an in-forest in Γ
whose associated monomial is less than or equal w.r.t. u than the monomial of Φ and of
the same degree.

u . . . i v . . . z

9 Animations of joins of graphs
Let Γ1 and Γ2 be loopless graphs. Let Γ = Γ1 ∨ Γ2 be their join. Let V be the vertex
set of Γ. Theorem 6.1(i) suggests that in order to prove Theorem A, we should relate
the nilpotent animations of Γ to those of Γ1 and Γ2. In this section, we accomplish just
that. Recall that by Proposition 3.4, we may express W−

Γ (q, q−s) in terms of the integral∫
(OV )××P Γ−(s). When considering the integrand in (3.2), for each (x, z) ∈ (OV )× ×P,

there exists some vertex u ∈ V whose associated coordinate xu is a unit. As a major
ingredient of our proof of Theorem A, instead of characterising all nilpotent animations
of Γ, in this section, we exhibit a subset of u-centred animations (see Definition 9.1)
relative to an arbitrary but fixed vertex u ∈ V , corresponding to a unit coordinate as
above. For each choice of u, the key features of u-centred animations are as follows.

• Let u belong to Γi. Then u-centred animations of Γ arise very explicitly from
nilpotent animations of Γi. In particular, the monomial associated with a u-centred
animation can be explicitly described in terms of the monomial associated with an
associated animation of Γi (Example 9.4 and Proposition 9.5).

• Every nilpotent animation is “dominated” by a u-centred one of the same degree
(Theorem 9.3). This allows us to focus on u-centred animations only.
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Let Vi be the vertex set of Γi. Clearly,∫
(OV )××P

Γ−(s) =
∫

(OV1)××(OV2)××P

Γ−(s) +
∫

(OV1)××PV2×P

Γ−(s) +
∫

PV1×(OV2)××P

Γ−(s). (9.1)

Among the summands on the right-hand side of (9.1), the first is the easiest to analyse
since it can be computed explicitly in terms of n1 and n2; see Lemma 11.2. Our proof
of Theorem A in §11 will rely heavily on an analysis of the second and third summand
in (9.1) using the machinery surrounding u-centred animations developed in the following.

9.1 Setup, centred animations, and main result
Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be loopless graphs. We assume that V1 ∩ V2 = ∅ and
V1 ̸= ∅ ≠ V2. Write ni = |Vi| and V = V1 ⊔ V2. Let Γ = Γ1 ∨ Γ2 be the join of Γ1 and Γ2.

Definition 9.1. Let α ∈ Nilk(Γ). Let u ∈ V . Write {1, 2} = {i, j} with u ∈ Vi. We say
that α is u-centred if |Vj ∩D(α)| = min(k, nj) and vα = u for all v ∈ Vj ∩D(α).

Remark 9.2.

(i) Whether α is u-centred generally depends on the specific representation of Γ as a
join Γ1 ∨ Γ2 of subgraphs Γ1 and Γ2. These decompositions are far from unique, as
the example of a complete graph Kn with n ⩾ 4 shows.

(ii) We expand Definition 9.1 as follows. Let α ∈ Nilk(Γ). If k ⩽ nj , then α is u-centred
if and only if D(α) ⊂ Vj and vα = u for all v ∈ D(α). If k ⩾ nj , then α is u-centred
if and only if Vj ⊂ D(α) and vα = u for all v ∈ Vj .

To avoid having to carry around the indices i and j all the time, in the following, we
simply assume that u ∈ V1 so that (i, j) = (1, 2).

We will see in §9.2 that the minors associated with u-centred nilpotent animations
arise, in an explicit fashion, from minors associated with nilpotent animations of Γi. The
following is the main result of this section.

Theorem 9.3. Let Γ = Γ1 ∨ Γ2 and u ∈ V as above. Let α ∈ Nilk(Γ). Then there exists
β ∈ Nilk(Γ) such that β is u-centred and mon(β) ≼u mon(α).

9.2 Minors of centred animations
Let Γ = Γ1 ∨ Γ2 as in §9.1. Without loss of generality, let u ∈ V1. We show the following.

(a) Nilpotent u-centred animations of Γ of degree at most n2 (“small”) can be described
explicitly. The associated minors are simply powers of Xu; see Example 9.4.

(b) Nilpotent u-centred animations of Γ of degree k ⩾ n2 (“large”) arise explicitly
from nilpotent animations of Γ1. The associated minors are precisely of the form
Xn2
u m·mon(α′), where α′ ∈ Nil(Γ1) and m is a monomial in XV2 ; see Proposition 9.5.

41



9 Animations of joins of graphs

Example 9.4 (Small u-centred animations and their minors). Let 0 ⩽ k ⩽ n2. Let
v1, . . . , vk ∈ V2 be distinct. Define α ∈ Nilk(Γ) via D(α) = {v1, . . . , vk} and vαi = u.
Then α is u-centred and mon(α) = Xk

u . Conversely, every u-centred nilpotent animation
of degree k ⩽ n2 is of this form.

As Γ is connected and loopless with n := n1 + n2 vertices, Corollary 7.3 shows that
Niln−1(Γ) ̸= ∅ = Niln(Γ).
Proposition 9.5 (Minors of large u-centred animation). Let k ⩾ n2.

(i) Let α ∈ Nilk(Γ) be u-centred. (The existence of α forces k ⩽ n1 + n2 − 1.) Let
V ′1 = {v ∈ V1 : vα ∈ V1}. We view α′ = α ↾ V ′1 as an element of Nil(Γ1). Then

mon(α) = Xn2
u

∏
v∈V α∗

2

Xvα ·mon(α′).

(ii) Conversely, let k = n2 + ℓ + d ⩽ n1 + n2 − 1 for ℓ, d ⩾ 0. Let α′ ∈ Nilℓ(Γ1) and
let m be a monomial of degree d in XV2. Then there exists a u-centred animation
α ∈ Nilk(Γ) with

mon(α) = Xn2
u m ·mon(α′).

Proof.
(i) Let v ∈ D(α). Then v ∈ V1 or v ∈ V2. If v ∈ V2, then vα = u and since
|V2 ∩D(α)| = n2, this contributes the factor Xn2

u . If v ∈ V1, then either v ∈ V ′1 (if
vα ∈ V1) or v ∈ V α∗

2 (if vα ∈ V2).

(ii) Let y(1), . . . , y(d) ∈ V2 (not necessarily distinct) with m = Xy(1) · · ·Xy(d). By
Lemma 8.3, the number of ≼α′-maximal elements of V1 is n1 − ℓ. Since k =
n2 + ℓ + d ⩽ n1 + n1 − 1 we have n1 − ℓ ⩾ d + 1. Hence, there are distinct ≼α′-
maximal elements x(1), . . . , x(d + 1) ∈ V1. We may assume that u ≼α′ x(d + 1).
Let α0 ∈ Niln2+ℓ(Γ) be defined by

vα =
{

vα
′
, if v ∈ V1,

u, if u ∈ V2.

Note that x(1), . . . , x(d + 1) are ≼α0-maximal with y(i) ≼α0 u ≼α0 x(d + 1) for
i = 1, . . . , d. Let α = α0[x(1) ← y(1), . . . , x(d) ← y(d)]. Repeated application of
Lemma 8.4 shows that α ∈ Nilk(Γ). By construction, mon(α) = Xn2

u m mon(α′). ♦

9.3 Proof of Theorem 9.3
Let Γ = (V, E) be a loopless graph. Let u ∈ V . Suppose that V = V1 ⊔ V2 such that
V1 ̸= ∅ ≠ V2 and v1 ∼ v2 for all v1 ∈ V1 and v2 ∈ V2. Without loss of generality, suppose
that u ∈ V1. Write ni = |Vi|. For α ∈ Nil(Γ), let

R(α) = #{v ∈ V2 : vα ∈ V2},
Lu(α) = #{v ∈ V2 : vα ∈ V1 \ {u}}, and
M(α) = #{v ∈ V2 : vα = u}.
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Given α ∈ Nil(Γ) and v ∈ V , recall that lastα(v) denotes the unique ≼α-maximal
element of V with v ≼α lastα(v) (see §8.1). As we will see below, Theorem 9.3 will
follow from an explicit procedure which, starting with an initial animation α ∈ Nilk(Γ),
minimises R(α) and Lu(α) and which maximises M(α). It is based on the following three
lemmas.

Lemma 9.6. Let α ∈ Nilk(Γ). Then there exists β ∈ Nilk(Γ) with mon(β) ≼u mon(α)
and R(β) = 0.

Proof. Suppose that R(α) > 0, say vα = w for v, w ∈ V2. By induction, it suffices to find
β ∈ Nilk(Γ) with mon(β) ≼u mon(α) and R(β) < R(α).

If u $α v, then Lemma 8.4 shows that we may simply take β = α[v ← u] ∈ Nilk(Γ),
which indeed satisfies mon(β) ≼u mon(α) and R(β) < R(α). We may thus assume u ≼α v.

Let z = lastα(w). Suppose that z ∈ V2 so that u ∼ z. Let β = α[v ← ⊥, z ← u]. By
Lemma 8.10, β ∈ Nilk(Γ) and mon(β) ≼u mon(α). By construction, R(β) < R(α).

Suppose that z ∈ V1 so that w ̸= z. In this final case, the distinguished vertex u plays
no role. Thus, as w ≺α z, there exists y ∈ V with v ≺·α w ≼α y ≺·α z. Since v, w ∈ V2 and
z ∈ V1, we have v ∼ z ∼ w. We therefore obtain β = α[v ← z, z ← w, y ← ⊥] ∈ Nilk(Γ)
as in Lemma 8.6. In particular, mon(α) = mon(β) and clearly also R(β) < R(α). ♦

Lemma 9.7. Let α ∈ Nilk(Γ) with R(α) = 0. Then there exists β ∈ Nilk(Γ) with
mon(β) ≼u mon(α) and such that Lu(β) = R(β) = 0.

Proof. Suppose that R(α) = 0 and Lu(α) > 0. It suffices to find β ∈ Nilk(Γ) with
mon(β) ≼u mon(α), R(β) = 0, and Lu(β) < Lu(α).

Let v ∈ V2 and w ∈ V1 \ {u} with vα = w. Note that u ∼ v and u ̸= v. If u $α v, then
by Lemma 8.4, we may simply take β = α[v ← u]. Thus, suppose that u ≼α v. Since
u ̸= v, there exists i ∈ V with u ≼α i ≺·α v. Let z = lastα(w). Then

u ≼α i ≺·α v ≺·α w ≼α z

Suppose that z ∈ V2 so that u ∼ z. Let β = α[v ← ⊥, z ← u]. By Lemma 8.10, β ∈
Nilk(Γ) and mon(β) ≼u mon(α). By construction, R(β) = R(α) = 0 and Lu(β) < Lu(α).

Suppose that z ∈ V1 so that u ∼ v ∼ z. Let β = α[i ← ⊥, v ← u, z ← v]. By
Lemma 8.12, β ∈ Nilk(Γ) and mon(β) ≼u mon(α). Clearly, R(β) = R(α) = 0 and
Lu(β) < Lu(α). ♦

Lemma 9.8. Let α ∈ Nilk(Γ) with Lu(α) = R(α) = 0. Then there exists β ∈ Nilk(Γ)
with mon(β) ≼u mon(α), Lu(β) = R(β) = 0, and M(β) = min(k, n2).

Proof. First suppose that k ⩽ n2. By Example 9.4, there exists β ∈ Nilk(Γ) with
mon(β) = Xk

u , Lu(β) = R(β) = 0 and M(β) = k. Clearly, mon(β) ≼u mon(α).
Henceforth, let k ⩾ n2. Suppose that Lu(α) = R(α) = 0 but b := M(α) < n2. It suffices
to find β ∈ Nilk(Γ) with mon(β) ≼u mon(α), Lu(β) = R(β) = 0, and M(β) > M(α). As
Lu(α) = R(α) = 0, we have b = M(β) = |D(α) ∩ V2|. Let y1, . . . , yb ∈ V2 be distinct
with yαi = u for i = 1, . . . , b. Since b < n2, there exists z ∈ V2 \ {y1, . . . , yb}. Note that
Lu(α) = R(α) = 0 and z ̸= yi for i = 1, . . . , b together imply that zα = ⊥.
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Suppose that u $α z. Since b < n2 ⩽ k = deg(α), there exists v ∈ V1 with vα ̸= ⊥. Let
β = α[v ← ⊥, z ← u]. By Lemma 8.4 (applied to α[v ← ⊥]), β ∈ Nilk(Γ). We clearly
have mon(β) ≼u mon(α), Lu(β) = R(β) = 0 and M(β) > M(α).

Suppose that u ≼α z. In this case, we may apply Lemma 8.10 with u = v to obtain
β = α[u ← ⊥, z ← u] ∈ Nilk(Γ) with mon(β) ≼u mon(α). Clearly, Lu(β) = R(β) = 0
and M(β) > M(α). ♦

Proof of Theorem 9.3. Recall that Γi = (Vi, Ei). Without loss of generality, we may
assume that u ∈ V1. (Hence, in the setting of §9.1, (i, j) = (1, 2).) By applying
Lemmas 9.6–9.8 in succession, we obtain β ∈ Nilk(Γ) such that mon(β) ≼u mon(α),
Lu(β) = R(β) = 0, and M(β) = min(k, n2). We conclude that if v ∈ V2, then vβ ∈ {u,⊥}
and |D(β) ∩ V2| = min(k, n2). Hence, β is u-centred. ♦

9.4 Bivariate monomials as minors
Let Γ = Γ1 ∨ Γ2 as in §9.1. As before, let V = V1 ⊔ V2 and n = n1 + n2.

Lemma 9.9. For i = 1, 2, let ui ∈ Vi. Let 0 ⩽ k ⩽ n− 1. Then there are e1, e2 ⩾ 0 with
e1 + e2 = k such that there exists α ∈ Nilk(Γ) with mon(α) = Xe1

u1Xe2
u2.

Proof. Suppose, without loss of generality, that n1 ⩽ n2. If k ⩽ n2, then we simply
choose distinct elements v1, . . . , vk ∈ V2 and let α be given by vαi = u1 for i = 1, . . . , k.
In this case, mon(α) = Xk

u1 . Thus, let n2 ⩽ k < n = n1 + n2 so that k − n2 < n1.
Let V2 = {v1, . . . , vn2} and let w1, . . . , wk−n2 be distinct elements of V1 \ {u1}. Define
α ∈ Nilk(Γ) via vαi = u1 for i = 1, . . . , n2 and wα

j = u2 for j = 1, . . . , k − n2. Then
mon(α) = Xn2

u1 Xk−n2
u2 . ♦

The following observation will be the key to computing the first summand on the
right-hand side of (9.1) in Lemma 11.2.

Corollary 9.10. Let x ∈ OV . Let ui ∈ Vi for i = 1, 2 and suppose that xu1 , xu2 ∈ O×.
Then for each k with 0 ⩽ k ⩽ n1+n2−1, there exists α ∈ Nilk(Γ) with mon(α)(x) ∈ O×. ♦

10 Adding generic rows (or columns) to matrices of linear forms
In this section, we study the effect of adding generic rows to matrices of linear forms
on the minors of their ◦-duals. Our work here will play a crucial role in our proof of
Theorem A in §11; see, in particular, §11.4. Apart from providing tools to be used in our
proof of Theorem A, we also obtain the following result of potential independent interest.

Theorem 10.1. Let O be a compact DVR with residue field of size q. Let U be a finite
set. Let A ∈ Mn×m(O[XU ]) be a matrix of linear forms. Let Ũ be obtained from U
by adding m further symbols. Let Ã ∈ M(n+1)×m(O[XŨ ]) be a matrix of linear forms
obtained from A by adding a row populated (in some order) with the variables attached to
the aforementioned symbols from Ũ \ U . Then Zask

Ã/O
(T ) = Zask

A/O(T ) · 1−qn−mT
1−qn−m+1T .
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10 Adding generic rows (or columns) to matrices of linear forms

Remark 10.2. Theorem 10.1 generalises the first part of [18, Prop. 5.24], which estab-
lishes the special case that A = AH for a hypergraph H.

For the sake of completeness, we note that the effect of adding a generic new column
rather than row to a matrix of linear forms is easily deduced from Theorem 10.1.

Corollary 10.3. Let the notation be as in Theorem 10.1. Let U˜ be obtained from U by
adding n symbols. Let A˜ ∈ Mn×(m+1)(O[XU˜ ]) be obtained from A by adding a column
containing variables attached to symbols from U˜ \U . Then Zask

A˜/O(T ) = Zask
A/O(q−1T )· 1−q−1T

1−T .

Proof. Let B be any d × e matrix of linear forms over O. Then [13, Lem. 2.4] yields
Zask
B/O(T ) = Zask

B⊤/O(qd−eT ). Applying Theorem 10.1 to A⊤, we obtain Zask
Ã⊤/O

(T ) =

Zask
A⊤/O(T ) · 1−qm−nT

1−qm−n+1T = Zask
A/O(qm−nT ) · 1−qm−nT

1−qm−n+1T . We may identify Ã⊤ = A˜⊤. Thus,

Zask
A˜/O(T ) = Zask

A˜⊤/O
(qn−m−1T ) = Zask

Ã⊤/O
(qn−m−1T ) = Zask

A/O(q−1T ) · 1− q−1T

1− T
. ♦

10.1 Some minor matrix manipulations
Let R be a ring. The group GLn(R)×GLm(R) acts on Mn×m(R) via A.(U, V ) = U−1AV
for A ∈ Mn×m(R), U ∈ GLn(R), and V ∈ GLm(R). Let ≃ denote the corresponding
equivalence relation on Mn×m(R).

Lemma 10.4. Let A, B ∈ Mn×m(R) with A ≃ B. Let r ∈ R. Then[
A

r1m

]
≃
[

B
r1m

]
.

Proof. Let B = UAV for U ∈ GLn(R), V ∈ GLm(R). Then
[
U 0
0 V −1

]
[ A
r1m

]V = [ b
r1m

]. ♦

Recall that for a matrix A over R, we write Im(A) for the ideal of R generated by the
k × k minors of A.

Lemma 10.5. Let A ∈ Mn×m(R). Let r ∈ R. Define Ã = [ A
r1m

] ∈ M(n+m)×m(R). Let

0 ⩽ k ⩽ m. Then Ik(Ã) =
k∑
i=0

riIk−i(A).

Proof. Let I ⊂ {1, . . . , n+m} and J ⊂ {1, . . . , m} with |I| = |J | = k. Let Ã[I | J ] be the
submatrix of Ã consisting of the rows indexed by elements of I and the columns indexed
by elements of J ; we use analogous notation for submatrices of A. Let I ′ = {i− n : i ∈
I} ∩ {1, . . . , m}. If I ′ ̸⊂ J , then Ã[I | J ] contains a zero row whence det(Ã[I | J ]) = 0.
Thus, suppose that I ′ ⊂ J . Let i = |I ′| ⩽ m and note that

det(Ã[I | J ]) = ri det(Ã[I \ I ′ | J \ I ′] = ri det(A[I \ I ′ | J \ I ′]).

This shows that every nonzero k × k minor of Ã is of the form rim for 0 ⩽ i ⩽ k and a
(k − i)× (k − i) minor m of A. Conversely, by reversing our reasoning, we find that each
such element rim arises as a minor of Ã. ♦
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10 Adding generic rows (or columns) to matrices of linear forms

10.2 Reminder: elementary divisors and minors
Recall that O denotes a compact DVR with maximal ideal P, residue field size q,
uniformiser π ∈ P\P2, normalised valuation ν, and field of fractions K. Let A ∈ Mn×m(O)
have rank r over K. Using the structure theory of modules over the local PID O, we
obtain a unique λ(A) = (λ1(A), . . . , λr(A)) such that 0 ⩽ λ1(A) ⩽ · · · ⩽ λr(A) <∞ and
A ≃

[
diag(πλ(A)) 0

0 0

]
, where diag(πλ(A)) := diag(πλ1(A), . . . , πλr(A)). The πλi(A) are the

elementary divisors (and invariant factors) of A.

Lemma 10.6 (Cf. [13, Lemma 4.6(ii)] or [22, §2.2]). Let U be a finite set. Let A =
A(XU ) ∈ Mn×m(O[XU ]) have rank r over K(XV ). Let x ∈ OU with rkK(A(x)) = r. Let
z ∈ O \ {0}. Then for i = 1, . . . , r, we have

∥Ii−1(A(x))∥
∥Ii(A(x)) ∪ zIi−1(A(x))∥ = qmin(λi(A(x)),ν(z)).

We note that the condition rkK(A(x)) = r on x is satisfied outside of a null set with
respect to the normalised Haar measure µ on OU .

10.3 Adding generic rows: elementary divisors of ◦-duals
Let R be a ring. Let U and V be finite sets with ℓ and n elements, respectively. Write
U = {u1, . . . , uℓ} and V = {v1, . . . , vn}. For 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m, and 1 ⩽ k ⩽ ℓ, let
αijk ∈ R. Define A(XU ) ∈ Mn×m(R[XU ]) and C(XV ) ∈ Mℓ×m(R[XV ]) via A(XU )ij =∑ℓ
k=1 αijkXuk

and C(XV )kj = ∑n
i=1 αijkXvi as in (2.1). Hence, A(XU ) and C(XV ) are

◦-duals of each other.
Let d ⩾ 1. Let Ũ = U ⊔ {grs : 1 ⩽ r ⩽ d, 1 ⩽ j ⩽ m}, where the grj are distinct.

Let Ṽ = V ⊔ {w1, . . . , wd}, where the the ws are distinct. Write G(d, m) = [Xgrj ] ∈
Md×m(R[X

Ũ
]); hence, G(d, m) is a generic d × n matrix in variables distinct from the

Xu (u ∈ U). Define

Ã(X
Ũ

) =
[

A(XU )
G(d, m)

]
∈ M(n+d)×m(R[X

Ũ
]) and

C̃(X
Ṽ

) =


C(XV )
Xw11m

...
Xwd

1m

 ∈ M(ℓ+dm)×m(R[X
Ṽ

]).

Lemma 10.7. C̃(X
Ṽ

) is a ◦-dual of C(XV ).

Proof. Ordering the elements of Ũ and Ṽ as u1, . . . , uℓ, g11, . . . , g1m, . . . , gd1, . . . , gdm and
v1, . . . , vn, w1, . . . , wd, respectively, the claim follows by inspection. ♦

It turns out that the elementary divisors of specialisations of C̃(X
Ṽ

) can be easily
expressed in terms of those of specialisations of C(XV ).
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Lemma 10.8. Let O be a compact DVR with an R-algebra structure. Let r be the rank

of C(XV ) over K. Let (x, y) ∈ OṼ = OV ⊕O(Ṽ \V ) with rkK(C(x)) = r and
d∏
i=1

yi ̸= 0.
Then

λi(C̃(x, y)) =
{

min(λi(C(x)), ν(yw1), . . . , ν(ywd
)), for i = 1, . . . , r,

min(ν(yw1), . . . , ν(ywd
)), for i = r + 1, . . . , m.

Proof. Note that C̃(X
Ṽ

) has rank m over K(X
Ṽ

). For (x, y) satisfying the conditions in
the lemma, we have rkK(C̃(x, y)) = m,

C(x) ≃
[
diag(πλ(C(x))) 0

0 0

]
∈ Mℓ×m(O), and

C̃(x, y) ≃
[
diag(πλ(C̃(x,y))) 0

0 0

]
∈ M(ℓ+dm)×m(O).

On the other hand, by Lemma 10.4, we may apply elementary row operations to the
(ℓ + dm)×m matrix C̃(x, y) to obtain

C̃(x, y) ≃


diag(πλ(C(x))) 0

0 0
yw11m

...
ywd

1m

 ≃
 diag(πmin(λ1(C(x)),e), . . . , πmin(λr(C(x)),e))

πe1m−r

0 0

 ,

where e = min(ν(yw1), . . . , ν(ywd
)). The claim follows from the uniqueness of the

λi(C̃(x, y)); note that the exponents along the diagonal entries of the preceding matrix
are nondecreasing. ♦

Corollary 10.9. Let the assumptions be as in Lemma 10.8. Let z ∈ O \ {0}. Let w ∈ O
with |w| = ∥yw1 , . . . , ywd

, z∥. Then

∥Ii−1(C̃(x, y))∥
∥Ii(C̃(x, y)) ∪ zIi−1(C̃(x, y))∥

=


∥Ii−1(C(x))∥

∥Ii(C(x))∪wIi−1(C(x))∥ , for i = 1, . . . , r,

|w|−1, for i = r + 1, . . . , m.

Moreover, if |w| = 1, then ∥Ii−1(C̃(x,y))∥
∥Ii(C̃(x,y))∪zIi−1(C̃(x,y))∥

= 1.

Proof. Let Λ = min(λi(C̃(x, y), ν(z)). By Lemma 10.6, the left-hand side of the displayed
equation in Corollary 10.9 is qΛ. By combining Lemmas 10.6 and 10.8, we find that qΛ

coincides with the right-hand side. ♦
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10.4 Proof of Theorem 10.1
While it is possible to prove Theorem 10.1 by combining Corollary 10.9 and the integrals
in Proposition 2.2, a cleaner derivation is obtained using the zeta functions attached to
modules over polynomial rings from [18, §2.6].

Let V be a finite set. For x ∈ OV , we write Ox for O endowed with the O[XV ]-module
structure Xvr = xvr (v ∈ V , r ∈ O). For a finitely generated O[XV ]-module M , define

ζM (s) =
∫

OV×O

|z|s−1 · |Mx ⊗O O/z| dµ(x, z).

Proposition 10.10 ([18, Cor. 2.15]). Let U and V be finite sets with |U | = ℓ and
|V | = n. Let A(XU ) ∈ Mn×m(O[XU ]) be a matrix of linear forms with ◦-dual C(XV ) ∈
Mℓ×m(O[XV ]). Then ζask

A(XU )/O(s) = (1− q−1)−1ζCoker(C(XV ))(s− n + m).

Proof of Theorem 10.1. We work in the setting of §10.3 with d = 1. Dropping a super-
script, we write Ṽ = V ⊔{w} so that C̃(X

Ṽ
) =

[
C(XV )
Xw1m

]
∈ M(ℓ+m)×m(O[X

Ṽ
]) is a ◦-dual

of Ã(X
Ũ

). Let M = Coker(C(XV )) and M̃ = Coker(C̃(X
Ṽ

)). By Proposition 10.10, it
suffices to show that

ζ
M̃

(s) = 1− q−1−s

1− q−s
· ζM (s + 1). (10.1)

We may view M̃ as the restriction of scalars of M along the ring map O[X
Ṽ

]→ O[XV ]
which sends Xw to 0 and which fixes each Xv (v ∈ V ). We identify OṼ = OV ×O, with
the factor O corresponding to the direct summand Obw of OṼ . The key observation is
that for (x, y) ∈ OṼ and z ∈ O, we have M̃(x,y) ⊗O O/z ≈O Mx ⊗O O/⟨y, z⟩ and thus

ζ
M̃

(s) =
∫

OV×O×O

|z|s−1|Mx ⊗O O/⟨y, z⟩| dµ(x, y, z).

We partition OV ×O×O = W1 ⊔W2, where

W1 = {(x, y, z) ∈ OV ×O×O : z | y} and
W2 = {(x, y, z) ∈ OV ×O×O : πy | z}.

To evaluate our integral over W1, we perform a change of variables y = zy′ with
|dy| = |z| · |dy′|. We thus find that∫

W1

|z|s−1|Mx ⊗O O/⟨y, z⟩| dµ(x, y, z) =
∫

OV×O×O

|z|s · |Mx ⊗O O/z| dµ(x, y′, z)

= ζM (s + 1).
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Integrating over W2 and changing variables via z = πyz′ and |dz| = q−1|y| · |dz′|, using
the Fubini-Tonelli theorem, we find that∫
W2

|z|s−1|Mx ⊗O O/⟨y, z⟩| dµ(x, y, z) = q−1
∫

OV×O×O

|πyz′|s−1|Mx ⊗O O/y| |y| dµ(x, y, z′)

= q−s
∫
O

|z|s−1 dµ(z) · ζM (s + 1).

It is well known (and easy to prove) that
∫
O

|z|s dµ(z) = 1−q−1

1−q−1−s . Hence, we find that

ζ
M̃

(s) = ζM (s + 1)
(

1 + q−s(1− q−1)
1− q−s

)
= 1− q−1−s

1− q−s
· ζM (s + 1),

as claimed. ♦

11 Proof of Theorem A (and a new proof of Theorem 1.15)
As always, O denotes a compact DVR with maximal ideal P and residue field size q. We
write t = q−s. In the following, we assume that s is arbitrary but fixed and that Re(s) is
sufficiently large with respect to the graphs involved.

11.1 Summary: W−
Γ as an integral for a loopless graph Γ

Let Γ = (V, E) be a loopless graph with n vertices and c connected components. Prior
to outlining the strategy of our proof of Theorem A, we now summarise various results
from [18] and the present article which provide us with a formula for W−

Γ in terms of
P-adic integrals. First, by Theorem 1.3(iii) and Proposition 3.4,

(1− t)W−
Γ (q, t) = 1 + (1− q−1)−1

∫
(OV )××P

Γ−(s). (11.1)

Next, by (3.2) and Corollary 7.3, for W ⊂ OV ×O, we have

∫
W

Γ−(s) =
∫
W

|z|s−c−1
n−c∏
k=1

∥I−k−1Γ(x)∥
∥I−k Γ(x) ∪ zI−k−1Γ(x)∥

dµ(x, z). (11.2)

Corollary 6.3 shows that for x ∈ OV , we have

∥I−k Γ(x)∥ = ∥mon(α)(x) : α ∈ Nilk(Γ)∥. (11.3)

Finally, Corollary 7.3 shows that I−k Γ is nonempty if and only if 0 ⩽ k ⩽ n− c.
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11.2 Setup and strategy
For the remainder of this section, let Γ1 = (V1, E1) and Γ2 = (V2, E2) be loopless graphs
and let Γ = Γ1 ∨ Γ2 as in §9.1. In particular, Γi has ni vertices and n = n1 + n2
is the number of vertices of Γ. Note that Γ is necessarily connected. We identify
OV = OV1 ×OV2 and XV = (XV1 , XV2). Our proof of Theorem A is based on a series of
auxiliary lemmas and claims. The first of these provides an equivalent form of Theorem A
in terms of P-adic integrals.

Lemma 11.1. Equation (1.1) holds for Γ = Γ1 ∨ Γ2 if and only if∫
(OV )××P

Γ−(s) = (1− q−1)(1− q−n1)(1− q−n2)qt

1− qt

+ 1− q1−n2t

1− qt

∫
(OV1)××P

Γ−1 (s + n2)

+ 1− q1−n1t

1− qt

∫
(OV2)××P

Γ−2 (s + n1) (11.4)

holds for Re(s)≫ 0.

Proof. Using (11.1), we may express W−
Γ (q, t) in terms of

∫
(OV )××P

Γ−(s) and analogously

for W−
Γi

(q, t). The equivalence of (11.4) and (1.1) then follows by inspection. ♦

Our proof of Theorem A uses §§9–10 to show that the three summands on the right-
hande side of (9.1) exactly match those on the right-hand side of (11.4).

For (x, y, z) ∈ OV ×O = OV1 ×OV2 ×O, whenever the following fraction is defined,
write

Fk(x, y, z) :=
∥I−k−1Γ(x, y)∥

∥I−k Γ(x, y) ∪ zI−k−1Γ(x, y)∥
. (11.5)

For k = 1, . . . , n − 1, by Lemma 10.6, we have 1 ⩽ Fk(x, y, z) ⩽ |z|−1 for almost all
(x, y) ∈ OV and all nonzero z ∈ O. Using (11.3), in the following, will express Fk(x, y, z)
in terms of animations of Γ.

11.3 The first summand
We now show that the first summands on the right-hand sides of (9.1) and (11.4) coincide.

Lemma 11.2.
∫

(OV1)×× (OV2)××P

Γ−(s) = (1− q−1)(1− q−n1)(1− q−n2) qt

1− qt
.

Proof. Let 0 ⩽ k ⩽ n− 1. Corollary 9.10 shows that for almost all (x, y, z) ∈ (OV1)× ×
(OV2)× × P, the ideal I−k Γ contains a monomial m such that m(x, y) ∈ O×. Hence,
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Fk(x, y, z) = 1 for k = 1, . . . , n − 1. The claim follows from
∫
P

|z|s dµ(z) = (1 −

q−1)q−1t/(1 − q−1t) and
∫

(OV1)×× (OV2)××P
Γ−(s) =

∫
(OV1)×× (OV2)××P

|z|s−2 dµ(x, y, z) =

µ((OV1)×)µ((OV2)×)
∫
P

|z|s−2 dµ(z). ♦

11.4 Towards the second summand: preparation
We derive a series of auxiliary facts which will then help us show that

∫
(OV1)××PV2×P

Γ−(s)

coincides with the second summand on the right-hand side of (11.4).
We call (x, y) ∈ OV1 × OV2 strongly nonzero if xv ̸= 0 ̸= yw for all v ∈ V1 and

w ∈ V2. Almost all (x, y) ∈ OV1 ×OV2 are strongly nonzero.

Claim 11.3. Let 1 ⩽ k ⩽ n2 and let (x, y) ∈ (OV1)× ×OV2 be strongly nonzero. Then
Fk(x, y) = 1.

Proof. Example 9.4 shows that as long as all components xv of x are nonzero, the ideal
I
−
k Γ(x, y) contains a unit for 0 ⩽ k ⩽ n2. ♦

Claim 11.4. Let 0 ⩽ e ⩽ n1 − 1. Then for all strongly nonzero (x, y) ∈ (OV1)× ×OV2,
we have

I
−
n2+eΓ(x, y) =

〈
yb ·mon(α)(x) : 0 ⩽ d ⩽ e, b ∈ N0V2 with

∑
b = d, α ∈ Nile−d(Γ1)

〉
.

Proof. Combine Proposition 8.9, Theorem 9.3, and Proposition 9.5. ♦

Write V2 = {w(1), . . . , w(n2)}. Let Γi have mi edges and ci connected components.
Then C−Γi

∈ Mmi×ni(Z[XVi ]) has rank ni − ci by Proposition 7.2. Define

C̃Γ1 =


CΓ1

Yw(1)1n1
...

Yw(n2)1n1

 ∈ M(m1+n1n2)×n1(Z[XV ]).

Claim 11.5. Let 0 ⩽ e ⩽ n1 − 1. Then I−n2+eΓ(x, y) = Ie(C̃Γ1(x, y)) for all strongly
nonzero (x, y) ∈ (OV1)× ×OV2.

Proof. This follows from Claim 11.4 and n2 applications of Lemma 10.5, one for each
block Yw(j)1n1 within C̃Γ1 . ♦

Claim 11.6. For all strongly nonzero (x, y) ∈ (OV1)× × OV2 and nonzero z ∈ O, we
have

n1+n2−1∏
k=1

Fk(x, y, z) =
n1−1∏
e=1

∥Ie−1(C̃Γ1(x, y))∥
∥Ie(C̃Γ1(x, y)) ∪ zIe−1(C̃Γ1(x, y))∥

.
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Proof. This follows from Claims 11.3 and 11.5 and the definition of Fk(x, y, z) in (11.5). ♦

Let
Ge(x, z) :=

∥I−e−1Γ1(x)∥
∥I−e Γ1(x) ∪ zI−e−1Γ1(x)∥

.

Analogously to the case of Fk(x, y, z), for e = 1, . . . , n1 − c1, by Lemma 10.6, we have
1 ⩽ Ge(x, z) ⩽ |z|−1 for almost all x ∈ OV1 and all nonzero z ∈ O.

Claim 11.7. For each measurable set W ⊂ (OV1)× ×PV2 ×P, we have

∫
W

Γ−(s) =
∫
W

|z|s−2∥y; z∥1−c1
n1−c1∏
e=1

Ge(x, gcd(y; z)) dµ(x, y, z).

Proof. Recall that Γ = Γ1 ∨ Γ2. In particular, Γ is connected. Using (11.2) (with c = 1)
and Claim 11.6, we obtain

∫
W

Γ−(s) =
∫
W

|z|s−2
n1−c1∏
e=1

∥Ie−1(C̃Γ1(x, y))∥
∥Ie(C̃Γ1(x, y)) ∪ zIe−1(C̃Γ1(x, y))∥

dµ(x, y, z).

We rewrite the e-indexed factors in the preceding integrand by applying Corollary 10.9
with C = CΓ1 , r = n1 − c1, d = n2, and C̃ = C̃Γ1 . Writing g = gcd(y; z) so that
|g| = ∥y; z∥, this yields

∥Ie−1(C̃Γ1(x, y))∥
∥Ie(C̃Γ1(x, y)) ∪ zIe−1(C̃Γ1(x, y))∥

=


∥Ie−1(CΓ1 (x))∥

∥Ie(CΓ1 (x))∪ gIe−1(CΓ1 (x))∥ , for e = 1, . . . , n1 − c1,

|g|−1, for e = n1 − c1 + 1, . . . , n1 − 1

for almost all (x, y) and all nonzero z. The claim then follows readily. ♦

We also require the following technical and elementary lemma.

Lemma 11.8. Let g: [0,∞)→ [0,∞) be measurable. Suppose that for some N ⩾ 0 and
all nonzero y ∈ P, we have g(|y|) ⩽ |y|−N . For d ⩾ 1, let Fd(s) =

∫
Pd

∥y∥sg(∥y∥) dµ(y).

Then for s ∈ C with Re(s) ⩾ N , we have Fd(s) = 1−q−d

1−q−1 F1(s + d− 1).

Proof. We proceed by induction on d, the case d = 1 being clear. Suppose that the
claim holds for some value of d. We partition the domain of integration Pd+1 in the
definition of Fd+1(s) as R ⊔ S, where R = {y ∈ Pd+1 : ∥y1, . . . , yd∥ ⩽ |yd+1|} and
S = {y ∈ Pd+1 : |yd+1| < ∥y1, . . . , yd∥}.
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11 Proof of Theorem A (and a new proof of Theorem 1.15)

On R, we may write yi = yd+1y′i for y′i ∈ O and i = 1, . . . , d. A change of variables
using |dyi| = |yd+1||dy′i| for i = 1, . . . , d yields∫

R

∥y∥sg(∥y∥) dµ(y) =
∫
R

|yd+1|sg(|yd+1|) dµ(y)

=
∫

Od×O

|yd+1|s+dg(|yd+1|) dµ(y′1, . . . , y′d, yd) = F1(s + d).

On S, write yd+1 = π gcd(y1, . . . , yd)y′d+1 for y′d+1 ∈ O. (Recall that π ∈ P\P2 denotes
a uniformiser of O.) A change of variables using |dyd+1| = q−1∥y1, . . . , yd∥|dy′d+1| yields∫

S

∥y∥sg(∥y∥) dµ(y) =
∫
S

∥y1, . . . , yd∥sg(∥y1, . . . , yd∥) dµ(y)

= q−1
∫

Od×O

∥y1, . . . , yd∥s+1g(∥y1, . . . , yd∥) dµ(y1, . . . , yd, y′d+1)

= q−1Fd(s + 1) = q−1 1− q−d

1− q−1 F1(s + d).

Hence, Fd+1(s) = (1 + q−1 1−q−d

1−q−1 )F1(s + d) = 1−q−(d+1)

1−q−1 F1(s + d) as claimed. ♦

11.5 The second and third summand and a proof of Theorem A
We now deal with the second (and, by symmetry, the third) summand in (9.1).

Lemma 11.9.
∫

(OV1)××PV2×P

Γ−(s) = 1− q1−n2t

1− qt

∫
(OV1)××P

Γ−1 (s + n2).

Proof. Consider the partition PV2×P = R⊔S, where R = {(y, z) ∈ PV2×P : |z| ⩽ ∥y∥}
and S = {(y, z) ∈ PV2 × P : ∥y∥ < |z|}. On R, we may write z = gcd(y)z′ for z′ ∈ O.
By taking W = (OV1)× ×R in Claim 11.7 and performing a change of variables using
|dz| = ∥y∥|dz′|, we obtain

∫
(OV1)××R

Γ−(s) =
∫

(OV1)××PV2×O

|z′|s−2∥y∥s−c1
n1−c1∏
k=1

Gk(x, gcd(y)) dµ(x, y, z′)

=
∫
O

|z′|s−2 dµ(z′) ·
∫

(OV1)××PV2

∥y∥s−c1
n1−c1∏
e=1

Ge(x, gcd(y)) dµ(x, y)

= 1− q−1

1− qt
·

∫
(OV1)××PV2

∥y∥s−c1
n1−c1∏
e=1

Ge(x, gcd(y)) dµ(x, y).
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For fixed x, we may view∏n1−c1
e=1 Ge(x, gcd(y)) as a function of ∥y∥ to which Lemma 11.8

is applicable. Using the Fubini-Tonelli theorem and (11.2) (applied to Γ1), we thus find
that ∫

(OV1)××R

Γ−(s) = 1− q−1

1− qt
· 1− q−n2

1− q−1

∫
(OV1)××P

|y|s+n2−c1−1
n1−c1∏
k=1

Gk(x, y) dµ(x, y)

= 1− q−n2

1− qt

∫
(OV1)××P

Γ−1 (s + n2). (11.6)

On S, we may write yv = πzy′v for v ∈ V2 and y′v ∈ O. By taking W = (OV1)× × S in
Claim 11.7 and performing a change of variables using |dyv| = q−1|z||dyv|, we obtain

∫
(OV1)××S

Γ−(s) = q−n2

∫
(OV1)××OV2×P

|z|s+n2−c1−1
n1−c1∏
k=1

Gk(x, z) dµ(x, y′, z)

= q−n2

∫
(OV1)××P

Γ−1 (s + n2). (11.7)

Together, (11.6) and (11.7) yield∫
(OV1)××PV2×P

Γ−(s) = 1− q−n2

1− qt

∫
(OV1)××P

Γ−1 (s + n2) + q−n2

∫
(OV1)××P

Γ−1 (s + n2)

= 1− q1−n2t

1− qt

∫
(OV1)××P

Γ−1 (s + n2),

as claimed. ♦

Corollary 11.10.
∫

PV1×(OV2)××P

Γ−(s) = 1− q1−n1t

1− qt

∫
(OV2)××P

Γ−2 (s + n1).

Proof. Interchange the roles of Γ1 and Γ2 in Lemma 11.9. ♦

Proof of Theorem A. By Lemma 11.1, the conclusion of Theorem A holds for Γ = Γ1∨Γ2
if and only if (11.4) holds. We then write

∫
(OV )××P Γ−(s) as a sum of three integrals

as in (9.1). The three summands in (9.1) agree with those in (11.4) by Lemma 11.2,
Lemma 11.9, and Corollary 11.10. ♦

For a cograph Γ, the following was previously spelled out in [18, Prop. 8.4].

Corollary 11.11. Let Γ be a loopless graph. Then W−
Γ∨•(X, T ) = 1−X−1T

1−XT ·W
−
Γ (X, X−1T ).

Proof. We know from [18, Table 1] that W−
• (X, T ) = 1/(1−XT ). Now apply Theorem A.

♦
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11.6 A new proof of the Cograph Modelling Theorem (Theorem 1.15)
By combining Theorem A and properties of the rational functions WH from [18, §5], we
obtain a new (and quite short) proof of Theorem 1.15. This new proof does not use any
results from [18, §§6–7], the key ingredients of the first proof of Theorem 1.15.

We first recall terminology and results from [18, §5]. Let H1 and H2 be hypergraphs.
Following [18, §3.1], the complete union H1 ⊛ H2 is obtained from the disjoint union
H1 ⊕ H2 by adjoining all vertices of H1 to each hyperedge of H2 and all vertices of H2 to
each hyperedge of H1. The following results from [18] explain the effects of disjoint and
complete unions on the rational functions WH.

Proposition 11.12 ([18, Prop. 5.12]). WH1⊕H2 = WH1 ∗T WH2 (Hadamard product in T ).
Proposition 11.13 ([18, Prop. 5.18]). Let Hi have ni vertices and mi hyperedges. For
i = 1, 2, write yi = Xni and zi = X−mi. Then:

WH1⊛H2 = z1z2T − 1 + WH1(X,z2T )(1−z2T )(1−y1z1z2T ) + WH2(X,z1T )(1−z1T )(1−y2z1z2T )
(1− T )(1− y1y2z1z2T ) .

For a hypergraph H, as in [18, §5.4], let H1 be obtained from H by adding a single
new hyperedge which contains all vertices. Let H0 be obtained from H by adding a new
hyperedge which does not contain any vertices.

Proposition 11.14 ([18, Prop. 5.24]). WH1 = 1−X−1T
1−T WH(X, X−1T ) and WH0 = WH.

New proof of Theorem 1.15. We show that for each cograph Γ on n vertices, there exists
a hypergraph H with n vertices and n− 1 hyperedges such that W−

Γ = WH. We proceed
by structural induction. Recall that beginning with a single isolated vertex, cographs are
constructed by repeatedly taking disjoint unions and joins of smaller cographs.

For the base case, if Γ consists of a single vertex, then clearly W−
Γ = 1/(1−XT ) = WH,

where H is the hypergraph on a single vertex and without hyperedges.
Let Γ1 and Γ2 be (co)graphs on n1 and n2 vertices, respectively. Suppose that H1 and

H2 are hypergraphs such that Hi has ni vertices and ni − 1 hyperedges and such that
W−

Γi
= WHi

. Then Proposition 11.12 and Proposition 11.14 yield

W(H1⊕H2)0 = WH1⊕H2 = WH1 ∗T WH2 = W−
Γ1
∗T W−

Γ2
= W−

Γ1⊕Γ2
.

Noting that (H1 ⊕ H2)0 has n1 + n2 vertices and n1 + n2 − 1 hyperedges, our claim thus
holds for Γ1 ⊕ Γ2. To show that it also holds for Γ1 ∨ Γ2, let H = (H1 ⊛ H2)1. This
hypergraph too has n1 + n2 vertices and n1 + n2 − 1 hyperedges. Let n = n1 + n2. By
Proposition 11.13 (with zi = X1−ni), we have

WH1⊛H2 =
(
X2−nT − 1

+ WH1(X, X1−n2T )(1−X1−n2T )(1−X2−n2T )

+ WH2(X, X1−n1T )(1−X1−n1T )(1−X2−n1T )
)
/((1− T )(1−X2T )).

Using Proposition 11.14 and Theorem A, we thus find that WH = W−
Γ1∨Γ2

whence our
claim holds for Γ1 ∨ Γ2. ♦
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In this final section, we derive an explicit graph-theoretic formula for W ♯
Γ (Proposition 12.1)

and derive analytic consequences (Proposition 12.3). We also show that the rational
functions W ♯

Γ are well behaved under joins of graphs (Proposition C). Finally, we collect
formulae for W ♯

Γ for all graphs on at most four vertices (Table 2). Recall that Γ̂ denotes
the reflexive closure of Γ. Since W ♯

Γ = W ♯

Γ̂, we may assume that Γ is loopless.

An explicit formula for W ♯
Γ. Let Γ = (V, E) be a (loopless) graph. The following

notation matches that from [15]. For U ⊂ V , let NΓ[U ] ⊂ V consist of all vertices from
U as well as all vertices adjacent to some vertex from U . Let dΓ(U) = |NΓ[U ] \ U |, the
number of vertices in V \U with a neighbour in U . Recall that ŴO(V ) denotes the poset
of flags of subsets of V .

Proposition 12.1. Let Γ = (V, E) be a (loopless) graph. Then

W ♯
Γ(X−1, T ) =

∑
y∈ŴO(V )

(1−X)|sup(y)| ∏
U∈y

XdΓ(U)T

1−XdΓ(U)T
. (12.1)

Proof. Let H = Adj(Γ̂) so that W ♯
Γ = WH. Using the notation from Theorem 1.14, as Γ̂

is reflexive, for each U ⊂ V , we have Ǔ = NΓ[U ]. Now apply Theorem 1.14. ♦

Remark 12.2. In [15], the cardinalities of the set NΓ[U ] featured crucially in an explicit
formula [15, Cor. B] for the coefficient of T in W−

Γ (X, T ). At present, no explicit
combinatorial formula for W−

Γ akin to (12.1) is known; see [18, Question 1.8(iii)].

Local poles. Let H be a hypergraph. Theorem 1.14 shows that WH can be written in
the form

W ♯
Γ = f(X, T )∏N

i=1(1−XaiT )
(12.2)

for f(X, T ) ∈ Z[X±1, T ] and a1, . . . , aN ∈ Z. For any graph Γ, the same conclusion
holds for W ♯

Γ. By Theorem 1.15, it also holds for W−
Γ if Γ is a cograph. In any case,

we may assume that f(X, X−ai) ̸= 0 for i = 1, . . . , N . It is then easy to see that the
representation in (12.2) is unique up to the order of the ai. We refer to the integers
a1, . . . , aN as the local poles of WH; multiplicities of local poles are understood in
the evident way. The local poles of WH are precisely the real parts of the poles of the
meromorphic function WH(q, q−s), where q > 1 is arbitrary.

Even for cographs Γ, the local poles of W−
Γ remain mysterious. In particular, positive

and negative local poles can arise and no single number appears as a universal local pole
of all W−

Γ ; see [18, Table 2]. In contrast, the W ♯
Γ are much better behaved.

Proposition 12.3. Let Γ = (V, E) be a (loopless) graph. Then:

(a) Each local pole of W ♯
Γ is nonpositive.
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(b) Let Γ have c connected components. Then W ♯
Γ has a pole of order c + 1 at T = 1.

That is, (1− T )c+1W ♯
Γ is regular at T = 1 and (1− T )c+1W ♯

Γ

∣∣∣∣∣
T←1
̸= 0.

Proof. The first part follows from Proposition 12.1 since dΓ(U) ⩾ 0 for each U ⊂ V .
It is easy to see that dΓ(U) = 0 is equivalent to U being a disjoint union of (zero or
more) connected components of Γ. In particular, if U0 ⊂ · · · ⊂ Ur ⊂ V with dΓ(Ui) = 0
for i = 0, . . . , r, then r ⩽ c. This proves that (1 − T )c+1W ♯

Γ is regular at T = 1. Let
F ⊂ ŴO(V ) consist of those flags y = (U0 ⊊ U1 ⊊ · · · ⊊ Ur) of subsets of V such that
precisely c + 1 of the Ui satisfy dΓ(Ui) = 0. Such a flag y necessarily satisfies U0 = ∅ and
sup(y) = Ur = V , in addition to r ⩾ c. The elements of F are precisely the flags that

contribute nonzero summands to (1 − T )c+1W ♯
Γ

∣∣∣∣∣
T←1

. It remains to rule out possible

cancellations. Write n = |V |. Evaluating at X = 1/2, we obtain

(1− T )c+1W ♯
Γ(2, T )

∣∣∣∣∣
T←1

=
∑
y∈F

2−n
∏
U∈y

dΓ(U)>0

2− dΓ(U)T

1− 2− dΓ(U)T
. (12.3)

Given y ∈ F, let f(y) = #{U ∈ y : dΓ(U) > 0} ⩾ 0. Viewed as a power series in T , the
coefficient of T f(y) of the summand corresponding to y on the right-hand side of (12.3)
is positive and all other coefficients are nonnegative. We conclude that the right-hand
side of (12.3) is nonzero. ♦

Remark 12.4. The description of the rational number given in (12.3) is reminiscent of
the definition of the constant cd in [20, (6.1)]. The latter constant occurs as a special
value of the reduced and topological subgroup zeta functions of the free class-2-nilpotent
groups of rank d; cf. [20, Thms. 6.8 and 6.11]. In both contexts, we lack a conceptual
interpretation of these rational numbers: a group-theoretic one in the case of cd, a
graph-theoretic one in the current case.

Joins and disjoint unions.

Proof of Proposition C. Recall that Γ̂ denotes the reflexive closure of a graph Γ. Clearly,
̂Γ1 ⊕ Γ2 = Γ̂1⊕Γ̂2 and ̂Γ1 ∨ Γ2 = Γ̂1∨Γ̂2. Using the notation from [18, §3.1], we thus have

Adj( ̂Γ1 ⊕ Γ2) = Adj(Γ̂1)⊕Adj(Γ̂2) and Adj( ̂Γ1 ∨ Γ2) = Adj(Γ̂1) ⊛Adj(Γ̂2) (complete
union). The first claim follows from Proposition 11.12 and the second from [18, Cor.
5.18] with mi = ni. ♦

Formulae for small graphs. Table 2 lists the rational functions W ♯
Γ for all loopless graphs

on at most four vertices. Table 2 is a sequel to [18, Table 1] which lists W +
Γ and W−

Γ
for the same class of graphs. Formulae for W ♯

Γ for all 1252 graphs on at most seven
vertices are available on the first author’s home page. These functions were computed
using Proposition 12.1. For graphs on at most six vertices, they agree with computations
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performed using Zeta [16]. (For some graphs on seven vertices, using the algorithms
from [18] implemented in Zeta to compute W ♯

Γ requires a significant amount of memory
which renders these computations impractical on a typical desktop computer.)

Some infinite families of graphs. Some of the rational functions in Table 2 were
previously known in the sense that they follow from existing results in the literature.
First, let Kn and ∆n denote the complete and edgeless graph on n vertices, respectively.
By [13, Prop. 1.5], we have W ♯

Kd
= 1−X−dT

(1−T )2 . Using a result due to Brenti [3, Thm 3.4],
[13, Cor. 5.17] provides an explicit formula for W ♯

∆n
in terms of permutation statistics on

the hyperoctahedral group Bn = {±1} ≀ Sn. More generally, [6, Cor. 5.11] provides an
explicit formula for W ♯

Kd1 ⊕···⊕Kdn
in terms of permutations statistics on (n + 1)-coloured

permutations on n letters. This includes the aforementioned known formulae for W ♯
Kd

(n = 1, d1 = d) and W ♯
∆n

(d1 = · · · = dn = 1) as special cases. In this way, 10 of the 18
formulae in Table 2 are in fact explained by [6].
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Γ W ♯
Γ(X, T )

0
1−X−1T
(1−T )2

0 1
1+X−2T −4X−1T +T +X−2T 2

(1−T )3

0 1
1−X−2T
(1−T )2

0 1 2
1−X−3T +6X−2T −12X−1T +4T +T 2−4X−3T 2+12X−2T 2−6X−1T 2−X−3T 3

(1−T )4

0 1 2
1+X−3T −2X−2T −2X−1T +T +X−3T 2

(1−T )3

0 1 2
1+X−3T −4X−2T +X−1T +X−4T 2

(1−X−1T )(1−T )2
0

2 3

1−X−3T
(1−T )2

0 1 2 3 (1 + X−4T − 8X−3T + 24X−2T − 32X−1T + 11T + 11X−4T 2 − 56X−3T 2 + 96X−2T 2 − 56X−1T 2

+11T 2 + 11X−4T 3 − 32X−3T 3 + 24X−2T 3 − 8X−1T 3 + T 3 + X−4T 4)/(1− T )5

0 1 2 3
1−X−4T +4X−3T −2X−2T −8X−1T +4T −4X−4T 2+8X−3T 2+2X−2T 2−4X−1T 2+T 2−X−4T 3

(1−T )4

0 1 2 3
1+X−4T −4X−2T +T +X−4T 2

(1−T )3

0 1 2 3
1−X−4T +6X−3T −10X−2T +T −2X−5T 2+X−4T 2+8X−3T 2+X−2T 2−2X−1T 2+X−6T 3−10X−4T 3+6X−3T 3−X−2T 3+X−6T 4

(1−X−1T )2(1−T )3

0 1 2 3
1+X−4T −6X−2T +2X−1T −2X−5T 2+6X−4T 2−X−2T 2−X−6T 3

(1−X−1T )2(1−T )2

0 1

23

1+3X−4T −8X−3T +3X−2T +X−6T 2

(1−X−2T )(1−T )2

0 1

23

1+X−4T −4X−3T +X−2T +X−6T 2

(1−X−2T )(1−T )2

0

1

2 3 1+X−4T −2X−3T −2X−1T +T +X−4T 2

(1−T )3

0

1

2 3 1+X−4T −2X−3T −2X−2T +X−1T +X−5T 2

(1−X−1T )(1−T )2

0

1

2 3

1−X−4T +6X−3T −12X−2T +4X−1T −4X−5T 2+12X−4T 2−6X−3T 2+X−2T 2−X−6T 3

(1−X−1T )2(1−T )2

0

1

2 3

1−X−4T
(1−T )2

Table 2: W ♯
Γ for all graphs on at most four vertices
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