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Abstract. We study analytic properties of the representation zeta functions of arith-
metic groups of type A2, such as SL3(Z). In particular, we uncover further poles of these
functions and determine a natural boundary for their meromorphic continuation beyond
their abscissa of convergence. We analyse both the number field and function field case.

1. Introduction

1.1. Euler products: meromorphic continuations and natural boundaries. L-
functions in the Selberg class have an Euler product and an analytic continuation to the
entire complex plane with a pole at most at s = 1. Many natural L-functions come as an
Euler product because of some underlying local-global principle, but the analytic continu-
ation is by no means clear, either because it is hard to prove (which is one of the major
obstacles in the Langlands program), or because it is simply not true.

There is no reason that a random Euler product should have analytic continuation, and
even if it has some structure, this defines rarely an entire function. The prototypical result
goes back to Estermann [9] who proved that an Euler product of the shape

∏
p h(p

−s) with

h ∈ Z[x] satisfying h(0) = 1 has a natural boundary at ℜs = 0 unless h is a product of
cyclotomic polynomials. This has been generalized in various ways, most notably in [7,
Ch. 5] to Euler products of the form

(1.1)
∏
p

h(p, p−s)

for a bivariate polynomial h ∈ Z[x, y]. While the theory developed in [7] is not exhaustive,
it indicates that such Euler products typically have—provably or conjecturally—a natural
boundary a little bit to the left of the abscissa of absolute convergence, and there should
be a recipe to read it off from the shape of h. Nevertheless, the existence and location of
the natural boundary is rather subtle, cf. e.g. the discussion in [6], and remains unknown
in many seemingly simple cases. See also [1] for a survey.

1.2. Euler products from representation growth of groups. In this note we consider
analytic properties of Euler products yet more complicated than (1.1), arising as represen-
tation zeta functions of arithmetic groups. For a group G and n ∈ N let rn(G) denote the
number of inequivalent n-dimensional irreducible complex (continuous, if G is topological)
representations of G. We call G (representation) rigid if rn(G) is finite for all n. In this
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case, the representation zeta function

ζG(s) =
∞∑
n=1

rn(G)n
−s

of G converges for some s ∈ C if and only if G has polynomial representation growth, i.e.
rn(G) is bounded by a polynomial in n. This holds for certain arithmetic groups of type
A2 defined over number fields, such as SL3(Z). The zeta functions of these groups were
intensely studied in [4].

We proceed to describe the precise set-up, recalling well-known facts, e.g. from [4, § 1.1].
Throughout this paper, let k be a number field (i.e. a finite extension of Q) or a function
field (i.e. a finite extension of Fq(T )) with ring of integers O. For a place v of k, we write
kv for the completion of k at v and, if v is non-Archimedean, Ov for the completion of O
at v. Let S be a finite set of places of k, including all the Archimedean ones in the number
field case, and let OS = {x ∈ k | x ∈ Ov for all v ̸∈ S} be the ring of S-integers in k.

Let H be a connected, simply-connected absolutely almost simple algebraic group defined
over k, with a fixed embedding into GLd for some d ∈ N. We consider the arithmetic group
H(OS) = H(k) ∩ GLd(OS). If H(OS) has the strong Congruence Subgroup Property (i.e.

the congruence kernel ker(Ĥ(OS) → H(ÔS)) is trivial), abbreviated by sCSP, then we have

(1.2) ζH(OS)(s) = ζH(C)(s)
r
∏
v ̸∈S

ζH(Ov)(s),

where r is the degree of k over Q in the number field case and 0 in the function field case;
cf. [16, Proposition 1.3]. The Archimedean factors ζH(C) enumerate the finite-dimensional,
irreducible rational representations of the algebraic group H(C); their contribution to the
Euler product reflects Margulis super-rigidity. The non-Archimedean Euler factors indexed
by the places not in S are all rational functions, albeit not just in qv and q−sv , where qv
denotes the residue field cardinality at v. Computing these rational functions has proven
to be very challenging. Explicit formulae seem only to be known for groups of (Lie) type
A2 and A1.

1.3. Groups of type A2. Assume now that H is a connected, simply-connected, absolutely
almost simple algebraic group of type A2 defined over a number field k or over a function
field k with characteristic greater than 3. We consider the situation when it is either an
inner form arising from a matrix algebra over a central division algebra over k or an outer
form over a central division algebra over a quadratic extension K/k (with the same field Fq

of constants in the function field case so that K/k is a “geometric” extension).
Assume that H(OS) has the sCSP, so (1.2) applies. It is known that the abscissa of

convergence of ζH(OS) is equal to 1 and that it has meromorphic continuation to ℜs > 1− δ
for some δ > 0 (specifically, δ = 1/6 if k is a number field) with a double pole at s = 1 and
no pole in 1− δ < ℜs < 1; see [18, Thm. A].

In this paper we prove the following best possible refinement of these results, uniformly
for number fields and function fields. Let ζ3 ∈ k denote a primitive third root of unity. If
k is a number field we distinguish two cases:{

Case (A): (H is an outer form and K = k(ζ3)) or (H is an inner form and ζ3 ∈ k),

Case (B): otherwise.
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For the investigation of ζSL3(Z), for instance, Case (B) applies, since we are in the case of
an inner form and ζ3 ̸∈ Q.

If k is a function field with field of constants Fq, we define η = 0 if ζ3 ∈ k, equivalently
q ≡ 1 (mod 3), and η = 1 if ζ3 ̸∈ k, equivalently q ≡ −1 (mod 3). Here we distinguish the
cases (A): H is an inner form and (B): H is an outer form.

Theorem 1.1. Assume that H(OS) is an arithmetic group of type A2 defined as above over
a global field k with characteristic 0 or greater than 3, as described above, satisfying the
sCSP. Then the function ζH(OS) has meromorphic continuation to ℜs > 5/8 and a natural
boundary at ℜs = 5/8.

If k is a number field, it has a double pole at s = 1 and a pole at s = 4/5 of order 9 in
Case (A) and of order 5 in Case (B), and it has no other poles in ℜs > 3/4.

If k is a function field with field of constants Fq, it has double poles at s ∈ 1+ 2πi
log qZ and

poles at s ∈ 4/5 + πi
log q(η + 2Z) of order 9 in Case (A) and of order 5 in Case (B), and it

has no other poles in ℜs > 3/4.

Remark 1.2.

(1) That the degree of representation growth, i.e. the abscissa of convergence of ζH(OS),
only depends on the Lie type of the abstract group H (and not, for instance, on the
ring OS) is an instance of a more general phenomenon: the degree of representation
growth of an arithmetic group of the form H(OS) with the (weak) Congruence Sub-
group Property (i.e. with finite congruence kernel) only depends on the root system
associated with the algebraic group H; see [3, Thm. 1.1]. As similar invariance
phenomenon is established in [8] for representation zeta functions associated with
unipotent group schemes.

In contrast, we see here for the first time a situation where finer invariants, such
as the pole order of the second right-most pole of ζH(OS), here at s = 4/5, depend
more subtly on the underlying arithmetic structures.

(2) It would be interesting to have a conceptual explanation for the constant 5/8. The
local Euler factors come naturally as finite sums, and a trivial analysis of each
summand would only lead to analytic continuation up to ℜs > 2/3. However, there
is substantial cancellation—not algebraically, but asymptotically—which allows to
continue to ℜs > 5/8, but not further; cf. also Remark 2.2.

The proof of Theorem 1.1 is given in Section 2. It is based on an analysis of the non-
Archimedean factors in (1.2) provided in [4]. The Witten zeta function ζH(C) poses no
particular difficulty, so we turn directly to the non-Archimedean part of this Euler product.
As noted above, all its factors are rational functions. We recall the explicit yet intricate
formulae for almost all of these functions in Section 2.2. The product over their denomina-
tors poses no difficulty, as it yields a product of two translates of the zeta function ζk of k,
with a few Euler factors omitted. The challenge thus lies in the analysis of the product of
the numerators. This Euler product is not of the form (1.1), for which the theory of [7]
would be available mutatis mutandis, i.e. with the product running over places v ̸∈ S and
p replaced by the residue field cardinality q. Instead, we are led to consider Euler products
of polynomials in q−s and n−si , for polynomial expressions ni in q, with coefficients depend-
ing (mildly) on invariants of the arithmetic group H and certain congruence classes of the
residue field cardinality q. The remaining “exceptional” Euler factors have little bearing
on this analysis; we discuss them, together with the Archimedean factors, in Section 2.6.
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The hardest part of the proof is the analysis of the natural boundary. At this point the
argument in the function field case diverges from the number field case.

We are able to detect a second order term in the asymptotic formula for the Dirichlet
series coefficients rn(H(OS)) of ζH(OS). In the number field case we need to insert a smooth
weight for reasons to be explained in a moment.

Theorem 1.3. Assume that H(OS) is as in Theorem 1.1. There exist polynomials P, P̃ ∈
R[X] with degP = 1 and deg P̃ = 8 in Case (A) and deg P̃ = 4 in Case (B), so that for
every ϵ > 0 the following hold:

If k is a number field, then

(1.3)

∞∑
n=1

rn(H(OS))e
−n/x = xP (log x) + x4/5P̃ (log x) +Oϵ(x

3/4+ϵ).

If k is a function field with constant field Fq, then

rqn(H(OS)) = qnP (log qn) + q
4
5
nP̃ (log qn) +Oϵ(q

n(3/4+ϵ)).

Remark 1.4. That we cannot expect a power-saving in a sharp cut-off count in the situation
of (1.3) is not surprising, as an inspection of the Euler product over the factors (2.3) shows:
it is at least as difficult as the basic function

∑
n ϕ(n)

−s = ζ(s)
∏
p(1+(p−1)−s−p−s) where

at the current state of knowledge for the summatory function
∑

ϕ(n)≤x 1 no power-saving is

available; see [5].

Remark 1.5. The identity (1.3) invites a comparison with the asymptotic statement that

(1.4)
x∑

n=1

rn(H(OS)) ∼ c(H(OS)) · x log x for x→ ∞

for a constant c(H(OS)) ∈ R>0; see [4, Cor. B(2)]. Comparing (1.4) with (1.3) yields that
c(H(OS)) is the leading coefficient of P1. The constant c(SL3(Z)) is discussed in [4, Sec. 7.1].

1.4. Groups of type A1. Assume now that H is of type A1, viz. a form of SL2, and
that S contains all places dividing 2 and ∞. The group SL2(Z) does not have the strong
Congruence Subgroup Property, but groups of the form SL2(OS) do, for sufficiently large
finite sets of places S. Zeta functions of groups of the form H(OS) with the sCSP have
been considered e.g. in [16, § 10]. By [16, Thm. 10] we know that ζH(OS) has abscissa of
convergence equal to 2. A porism of their result is that the Euler product (1.2) allows for
some meromorphic continuation, unveiling a simple pole at s = 2. We extend these results
as follows.

Theorem 1.6. Assume that H(OS) is an arithmetic group of type A1 defined as above,
over a number field or over a function field of characteristic greater than 3, satisfying the
sCSP. The function ζH(OS) has meromorphic continuation to ℜs > 1 with a simple pole at

s = 2 (resp. simple poles at s = 2+ 2πi
log qn, n ∈ Z, if k is a function field with constant field

Fq) and no further poles. It has a branch cut singularity at s = 1.
There exists a constant c > 0 such that for every ϵ > 0 the following hold:
If k is a number field, then

∞∑
n=1

rn(H(OS))e
−n/x = cx2 +Oϵ(x

1+ϵ).
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If k is a function field with constant field Fq, then

rqn(H(OS)) = cq2n +Oϵ(q
n(1+ϵ)).

In particular, there exists no δ > 0 such that ζH(OS) has a meromorphic extension to
ℜs > 1− δ.

2. Proof of Theorem 1.1

2.1. Preliminaries. Recall that H is either an inner or an outer form. In the latter case let
χ denote the quadratic character of k associated with the relevant extension K/k describing
the splitting behaviour of a prime ideal p of k in K. In the former case we denote by χ
simply the trivial character.

If necessary, we momentarily enlarge the set S to include the finitely many finite places
v of k (if any) where K/k ramifies or whose residue field cardinality is divisible by 2 or 3.

Let v ̸∈ S be a place corresponding to a prime ideal p of k with residue field cardinality
q = Np. As in [4, (1.4)] we define

ε = εv = χ(p) ∈ {−1, 1}.

If ε = 1, then H(Ov) ∼= SL3(Ov); if ε = −1, then H(Ov) ∼= SU3(Ov).
Let ψ denote the character defined by

ψv = ψ(p) =
(−3

q

)
=

{
1, q ≡ 1 (mod 3),

−1, q ≡ −1 (mod 3).

As in [4, (1.10)] we define

ι = ι(ε, q) = (q − ε, 3) = 2 + ϵvψv ∈ {1, 3}.

Note that ε and hence ι depend on v, not only on q.
We write ζSk (s) =

∏
v ̸∈S ζk,v(s) for the zeta function ζk(s) =

∏
v ζk,v(s) without the local

factors indexed by places v ∈ S, and similarly for the L-function LS(s, χψ).
In the function field case, the zeta- and L-functions under consideration are periodic with

respect to s 7→ s+ 2πi
log q , since its Dirichlet coefficients are indexed only by powers of q. We

note that ζk has a simple poles at s = 0 and s = 1 (resp. j + 2πi
log qn, n ∈ N, j ∈ {0, 1} in

the function field case), but is holomorphic otherwise. We need to understand the analytic
behaviour of L(., χψ).

We first assume that k is a number field. Then χ and ψ are Hecke characters, and we
observe that χψ is trivial if and only we are in Case (A). Indeed, ψ is trivial if and only if
ζ3 ∈ k. If ψ is non-trivial, then K/k is uniquely determined by the condition χ = ψ, and
we see that for K = k(ζ3) the character of the extension K/k equals ψ.

We now assume that k is a function field. Then χ is trivial if and only if we are in case
(A), namely H in an inner form. Moreover, ψ is the again the character associated with
the extension k(ζ3)/k, which is either trivial (if ζ3 ∈ k, equivalently η = 0) or a quadratic
constant field extension (if ζ3 ̸∈ k, equivalently η = 1). From [10, Prop. 5.3.2] we conclude
that

(2.1) L(s, χψ) = L
(
s+ η

π

log q
, χ

)
which is entire if and only if χ is trivial (since K/k is not a constant field extension).
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2.2. Generic Euler factors. Our starting point for the proof of Theorem 1.1 is the Euler
product (1.2). We use the explicit formula [4, Corollary D], cf. [18, Thm. C] in the function
field case, and consider the product

(2.2)
∏
v ̸∈S

(
ζH(Fq)(s) + ψε,q(s)

)
,

where

ζH(Fq)(s) =1 +
1

(q2 + εq)s
+

q − 1− ε

(q2 + εq + 1)s
+
q2 − q − 1 + ε

2(q3 − ε)s
+

1

q3s
+

q − 1− ε

(q3 + εq2 + q)s

+
q2 + εq − 2 + 2ι(ε, q)2+s

3((q + ε)(q − ε)2)s
+

(q − ε)(q − 3− ε) + 2ι(ε, q)2+s

6((q2 + εq + 1)(q + ε))s

(2.3)

is the representation zeta function of the finite group of Lie type H(Fq) and

ψε,q(s) =
((1− q2−3s)(q − 1)(q − ε)(2 + 2q−s + (q − 2)(q + 1)−s + q(q − 1)−s)

2(q2(q2 + εq + 1))s

+
(1− q2−3s)(q − ε+ ι(ε, q)2+s(q + ε)(q − ε)−s + ι(ε, q)2(q − 1)(q2 − 1)q−s)

((q3 − ε)(q + ε))s

+
(q − 1)(q − ε)2(q − 2 + 2q2−2s − q1−2s)

6(q3(q2 + εq + 1)(q + ε))s
+

(q − 1)(q2 − 1)q(1− q−2s)

2(q3(q3 − ε))s

+
(1− q1−2s)(q2 − 1)(q2 + εq + 1)

3(q3(q2 − 1)(q − ε))s
+

(q − 1)(q − ε)q(1 + q1−2s)

(q2(q3 − ε)(q + ε))s

+
(1− q−2s)q2ι(ε, q)2+s

(q(q3 − ε)(q2 − 1))s
+

(ε+ 1)ι(ε, q)2+sq2−2s

((q3 − 1)(q2 − 1)q)s

) 1

(1− q1−2s)(1− q2−3s)
.

(2.4)

We note that each of these Euler factors is a rational function in finitely many numbers
n−si (with ni depending on q, ε, and ι) and hence a meromorphic function. In ℜs > 1/2
the only possible poles appear on the line ℜs = 2/3. Since ζH(OS) is a generating series of
non-negative objects, it is non-zero on the segment s > 2/3.

In order to make these terms resemble (1.1) more closely, we insert a Taylor expansion:

(q + ε)−s = q−s
(
1− εs

q
+O

( |s|2
q2

))
,

(q2 + εq + 1)−s = q−2s
(
1− εs

q
+O

( |s|2
q2

))
,

(q3 − ε)−s = q−3s
(
1 +O

( |s|2
q2

))
,

((q + ε)(q − ε)2)−s = q−3s
(
1 +

εs

q
+O

( |s|2
q2

))
,

((q2 + εq + 1)(q ± 1))−s = q−3s
(
1− (ε± 1)s

q
+O

( |s|2
q2

))
,

((q3 − ε)(q2 − 1))−s = q−5s
(
1 +O

( |s|2
q2

))
,

(2.5)
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((q2 − 1)(q − ε))−s = q−3s
(
1 +

εs

q
+O

( |s|2
q2

))
,

((q3 − ε)(q + ε))−s = q−4s
(
1− εs

q
+O

( |s|2
q2

))
.

Plugging this into the previous equation, we obtain after a straightforward computation

E(s, q) := (1− q1−2s)(1− q2−3s)
(
ζH(Fq)(s) + ψε,q(s)

)
= 1 + ι(ε, q)2(q3−5s − q5−8s) + F (s, q),

(2.6)

say, with

(2.7) F (s, q) ≪s q
4−8ℜs + q2−5ℜs + q−2ℜs ≪ q4−8ℜs + q−2ℜs

and

d

ds
F (s, q) =

∫
|z−s|=(log q)−1

F (z, q)

z − s

dz

2πi
≪s (q

4−8ℜs + q−2ℜs) log q.

Remark 2.1. The summands in (2.4) reflect the organization of the relevant characters
according to invariants called shadows in [4]. Our analysis shows that no single shadow or
summand in (2.4) suffices to explain the asymptotic properties established in Theorem 1.1.
The relatively simple shape of (2.6) is therefore quite remarkable: both (2.3) and (2.4)
contribute additional terms of the form q4−6s, but they cancel. If the did not, we could only
continue to ℜs > 2/3, cf. also Remark 2.2.

In the following three sections we show that the infinite product (2.2) has meromorphic
continuation to ℜs > 5/8 and a natural boundary at ℜs = 5/8. In Section 2.6 we show
that these properties remain true after adding the finitely many missing Euler factors.

2.3. The analytic continuation. We now start with the proof of the analytic continuation
to ℜs > 5/8. For n,m ∈ Z with n ≡ m (mod 2) we define the polynomials

P+(x;n,m) =


(1− x)n, |m| ≤ n,

(1 + x)−(n+m)/2(1− x)(n−m)/2, |n| ≤ −m,
(1 + x)−n, |m| ≤ −n,
(1− x)(n+m)/2(1 + x)−(n−m)/2, |n| ≤ m,

P−(x;n,m) =


(1− x)(n+m)/2(1 + x)(n−m)/2, |m| ≥ n,

(1 + x)−m, |n| ≤ −m
(1 + x)−(n+m)/2(1− x)−(n−m)/2, |m| ≤ −n,
(1− x)m, |n| ≤ m.

Clearly we have P+(x;n,m) ≡ P−(x;n,m) (mod 2) and also

(2.8) P+(x;n,m) = 1− nx+ . . . , P−(x;n,m) = 1−mx+ . . . .
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By direct comparison of Euler products we obtain∏
v ̸∈S

εvψv=1

P+(q
−s;n,m)

∏
v ̸∈S

εvψv=−1

P−(q
−s;n,m)

= ζSk (s)
−n+m

2 LS(s, χψ)−
n−m

2 ·


1, |m| ≤ n,

ζSk (2s)
n+m

2 , |n| ≤ −m,
ζSk (2s)

n, |m| ≤ −n,
ζSk (2s)

n−m
2 . |n| ≤ m.

(2.9)

We now return to the right hand side of (2.6) and modify the ideas of [7, Lemma 5.5].
We put X = q, Y = q−s and consider the polynomials

W+,0(X,Y ) = 1 + 9X3Y 5 − 9X5Y 8, W−,0(X,Y ) = 1 +X3Y 5 −X5Y 8.

We proceed recursively as follows: given two polynomials

W+,j =
∑
m,n

α(j)
m,nX

nY m, W−,j =
∑
m,n

β(j)m,nX
nY m ∈ Z[X,Y ]

with α
(j)
m,n ≡ β

(j)
m,n (mod 2) and α

(j)
0,0 = β

(j)
0,0 = 1, we order the monomials lexicographically

by their exponents (m,n) and pick the smallest index (mj , nj) > (0, 0) such that α
(j)
mj ,nj or

β
(j)
mj ,nj are non-zero. We define

W±,j+1(X,Y ) =W±,j(X,Y )P±(X
njY mj ;α(j)

mj ,nj
, β(j)mj ,nj

).

Then the polynomials W±,j+1 have again constant term 1 and are congruent modulo 2.
Moreover, the smallest nontrivial monomial XnjY mj is cleared by (2.8) and no smaller
monomials are inferred. Finally, inductively we see easily that only monomials of the form

(2.10) (X3Y 5)u(X5Y 8)v = X3u+5vY 5u+8v

for u, v ∈ N0 can occur in W±,j .
For illustration we carry out the first two steps of this procedure. We have (m0, n0) =

(5, 3), α
(0)
5,3 = 9, β

(0)
5,3 = 1 and

(2.11) P±(X
3Y 5, 9, 1) =

{
(1−X3Y 5)9, ± = +,

(1−X3Y 5)5(1−X3Y 5)4, ± = −,

and so

(2.12) W±,1 =

{
1− 9X5Y 8 − 45X6Y 10 + . . .+ 9X32Y 53, ± = +,

1−X5Y 8 − 5X6Y 10 + . . .+X32Y 53, ± = −.

Next, we have (m1, n1) = (8, 5) and α
(1)
8,5 = −9, β

(1)
8,3 = −1 and

P±(X
5Y 8,−9,−1) =

{
(1 +X5Y 8)9, ± = +,

(1 +X5Y 8)5(1 +X5Y 8)4, ± = −,

getting

W±,2 =

{
1− 45X6Y 10 + . . .+ 9X77Y 125, ± = +,

1− 5X6Y 10 + . . .+X77Y 125, ± = −.
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For v ̸∈ S and i ∈ N let us define

Pi,v :=
i−1∏
j=0

Pεvψv(q
nj+smj ;α(j)

mj ,nj
, β(j)mj ,nj

).

Clearly, we have

W±,0(X,Y ) =W±,i(X,Y )

i−1∏
j=0

P±(X
njY mj ;α(j)

mj ,nj
, β(j)mj ,nj

)−1

for any i ∈ N, and by (2.9) and (2.10) we know that∏
±

∏
v ̸∈S

εvψv=±1

P−1
i,v

is a finite product of positive or negative integral powers of

(2.13) ζSk ((5u+ 8v)s− (3u+ 5v)) and LS((5u+ 8v)s− (3u+ 5v), χψ)

for certain u, v ∈ N0, (u, v) ̸= (0, 0), in particular meromorphic in s.
Returning to (2.6), we can write

E(s, q) =Wεvψv ,0(q, q
−s) + F (s, q) =

(
Wεvψv ,i(q, q

−s) + F (s, q)Pi,v
)
P−1
i,v(2.14)

for any i ∈ N. Here

Wεvψv ,i(q, q
−s) = 1 + q(3u0+5v0)−(5u0+8v0)s + . . .

where (u0, v0) can be chosen as large as we wish by choosing i sufficiently large. Moreover,
by (2.7) we see that F (s, q)Pi,v is bounded by

q(4+3u+5v)−(8+5u+8v)ℜs + q(3u+5v)−(8+5u+8v+2)ℜs

for certain positive integers u, v. We conclude that

(2.15)
∏
±

∏
v ̸∈S

εvψv=±1

(
Wεvψv ,i(q, q

−s) + F (s, q)Pi,v
)

is absolutely convergent in ℜs ≥ 5/8+δ for any δ > 0. In this way we obtain a meromorphic
continuation of

ζH(OS)(s) = ζSk (2s− 1)ζSk (3s− 2)
∏
v ̸∈S

E(s, q)

to the half plane ℜs > 5/8.

Carrying out only the first step of the inductive procedure described above, we see from
(2.11) and (2.12) that

(2.16) ζH(OS)(s) = ζSk (2s− 1)ζSk (3s− 2)ζSk (5s− 3)5LS(5s− 3, χψ)4H(s)

where H is an absolutely convergent Euler product in ℜs > 3/4 and hence in particular
holomorphic and non-vanishing.

Thus in ℜs > 3/4 the function ζH(OS) has the polar behaviour described in Theorem 1.1.
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2.4. The natural boundary – number field case. Next we show that the line ℜs = 5/8
is a natural boundary. To this end, we show that every given point s0 = 5/8 + it is a limit
point of zeros. For clarity we assume in this subsection that k is a number field and
explain the necessary modifications in the function field case in the next subsection. In
both cases we show, roughly speaking, that sufficiently many Euler factors have zeros in
a small neighbourhood of s0. A difficulty is, however, to make sure that these zeros are
not cancelled by poles for the zeta- and L-functions that arise in the course of the analytic
continuation. Here the argument diverges in the number and function field case. In the
former we use bounds for the total number of zeros of zeta functions over number fields. In
the latter we use the Riemann hypothesis (which is known over function fields) along with
Kronecker’s simultaneous approximation theorem to compensate for the fact that we have
only very few different norms at our disposal (namely those that are powers of q).

We proceed to show that ℜs = 5/8 is a natural boundary in the number field case. Let
c0 = c0(t) = 9(π + |t| log 2)/ log 9. Fix some small δ > 0 and consider the rectangle

Rδ = {s ∈ C : |ℜ(s− s0 − δ)| ≤ δ/2, |ℑ(s− s0)| ≤ c0δ}

with a typical Euler factor E(s, q) as in (2.6) corresponding to a place v with εvψv = 1. We
recall that in this case

(2.17) E(s, q) = 1 + 9q3−5s − 9q5−8s +O(q4−8ℜs + q2−ℜs).

In what follows we always assume that q is sufficiently large in terms of t and the fixed field
extension K/k. We will choose later q to be a function of δ and let δ tend to zero.

For n ∈ Z we are looking for zeros of E(s, q) in a neighbourhood of the points

s =
5

8
+
i(1 + 2n)π

log q
.

A good approximation can be found by putting V = q−1/8, U = q5/8−s and writing down
the Puiseux series in V of the equation 1 + 9U5V − 9U8 = 0 near U = −3−1/4. One checks
that

1 + 9q3−5s − 9q5−8s|
s= 5

8
+ 1

log q
(i(1+2n)π+ log 9

8
)
≪ q−1/8

and hence there must be constants cj such that for

sn,q :=
5

8
+

1

log q

(
i(1 + 2n)π +

log 9

8
+

7∑
j=1

cjq
−j/8

)
(2.18)

we have

1 + 9q3−5sn,q − 9q5−8sn,q ≪ q−1.

(While not relevant for the following discussion, the constants are

c1 =
33/4

8
, c2 = −3

√
3

64
, c3 = −21 · 31/4

1024
, c4 =

27

512
, c5 = −9639 · 33/4

1310720
,

c6 = −2079
√
3

131072
, c7 =

5942079 · 31/4

234881024
.
)

Note that ℜsn,q > 5/8. We assume n≪ log q, so that sn,q ≪ 1. By (2.17) we obtain

E(sn,q, q) ≪ q−1.
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On the other hand, for |s− sn,q| ≪ q−1 we compute

d

ds
E(s, q) = (8q5−8s − 5q3−5s) log q +

d

ds
F (s, q) = 8 +O(q−1/8 log q).

Thus for q sufficiently large and n ≪ log q we find a point s∗n,q (for instance by Newton’s
method) with

(2.19) s∗n,q − sn,q ≪ q−1

such that E(s∗n,q, q) = 0. Note that for q ≤ q′ < 2q we have

|s∗n,q − s∗n,q′ | ≥ |ℑ(s∗n,q − s∗n,q′)| = (1 + 2n)π
( 1

log q
− 1

log q′

)
+O

(1
q

)
≍ |1 + 2n|(q′ − q)

q(log q)2
+O

(1
q

)
> 0

(2.20)

provided that q′ − q ≥ (log q)3. (Note that because of the error term F (s, q) we cannot use
algebraic arguments such as [7, p. 130 or p. 133].)

We now define q0 and n by

(2.21) δ =
log 9

8 log q0
, n =

[ t log q0
2π

]
and restrict to numbers q ∈ I = [q0, 2q0]. Then for q ∈ I we have∣∣∣(1 + 2n)π

log q
− t

∣∣∣ ≤ π + |t| log 2
log q0

=
8

9
c0δ

and we conclude from (2.19) that for sufficiently large q we have

|ℑs∗n,q − t| ≤ c0δ,
∣∣∣ℜs∗n,q − 5

8
− δ

∣∣∣ ≪ δ2 ≤ 1

2
δ

and so
s∗n,q ∈ Rδ.

By (2.20) all s∗n,q with q ∈ I are pairwise distinct, provided the values of q are at least

(log q0)
3-spaced. We can force this by restricting to places v such that q ≡ 1 (mod

⌈(log q0)3⌉). We recall in addition the condition ϵvψv = 1, which is another set of (fixed)
congruences modulo 3 · Nr(∆) where ∆ ∈ k is the discriminant of the extension K/k. The
number of such places can be evaluated by a number field version of the Siegel-Walfisz
theorem [17] with the required uniformity in the modulus: we find

≍K/k
q0

log q0
· 1

log3[k:Q] q0
≫ q0.90 ≥ exp( 1

10δ
−1)

places v with q ∈ I such that E(s, q) has a zero in Rδ.
We now return to (2.14) and write

E(s, q) =
(
E(s, q)Pi,v

)
· P−1

i,v

for i ∈ N. By the discussion around (2.15), the global Euler product
∏
v ̸∈S E(s, q)Pi,v is

absolutely convergent in Rδ upon choosing i sufficiently large in terms of δ, and we know
that at least exp( 1

10δ
−1) Euler factors corresponding to places v with q ∈ I have a zero

ρ ∈ Rδ, and all these zeros are distinct.
On the other hand, we can express the global Euler product

∏
v ̸∈S P

−1
i,v as a finite product

of positive or negative integral powers of zeta- and L-functions of the form (2.13). Suppose
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that some of the above zeros ρ ∈ Rδ coincides with a zero of some ζ- or L-factors in (2.13)
(which may appear in the denominator with some multiplicity and hence cancel ρ). Then

5

8
+ δ +O(δ2) = ℜ(ρ) ≤ 1 + 3u+ 5v

5u+ 8v
≤ 1

5u+ 8v
+

5

8

and ℑρ≪ 1, so that

(5u+ 8v)ρ− (3u+ 5v)

is a zero of ζk or L(., χψ) with imaginary part ≪ (5u + 8v) ≪ 1/δ. There are at most
O(δ−1| log δ|) such zeros (cf. [13, Thm 5.8]), and the number of choices for the pair (u, v) is
O(δ−2), so that in total the meromorphic continuation of the global Euler product

∏
v ̸∈S P

−1
i,v

can have at most O(δ−3| log δ|) poles in Rδ. Choosing δ sufficiently small, this cannot
compensate the zeros found above.

We conclude that we find a sequence of zeros of the product (2.2) converging to our given
point s0.

2.5. The natural boundary – function field case. The main difference in the function
field case is that we have only a very sparse set of distinct values q available, namely only
numbers of the form qm, m ∈ N. On the other hand, the Riemann hypothesis is known,
which we will use in the subsequent analysis.

As before, let us fix some s0 = 5/8 + it and choose some place v with q = qm and
εvψv = 1. At least if m is even and sufficiently large, this is always possible: for even m we
have ψv = 1 and by a basic form of the Chebotarev density theorem (e.g. [10, Proposition
7.4.8] with n = 1, m = 2) places v with ϵv = 1 exist in abundance. Let us choose one such
v for each such q = q2m. Choose sn,q as in (2.18), s∗n,q as in (2.19) and n as in (2.21), so
that E(s∗n,q, q) = 0 and

(2.22) |ℑs∗n,q − t| ≪ 1

log q
, ℜs∗n,q −

5

8
=: ηq =

1

log q

( log 9
8

+O(q−1/4)
)
.

For q = q2m this gives a sequences of distinct zeros tending to s0. We need to show that
it contains a subsequence that is not cancelled by possible zeros of the zeta- and L-factors
at arguments of the form (5u+ 8v)s− (3u+ 5v) with u, v ∈ N0. The Riemann hypothesis
(see e.g. [10, Thm 5.5.1]) states that the zeros of ζK = ζkL(., χ) and hence of both ζk
and L(., χψ) (cf. (2.1)) are on the line ℜs = 1/2. Therefore, the real parts of the zeros in
question are at

1
2 + 3u+ 5v

5u+ 8v
.

Elementary algebra shows that this is larger than 5/8 only for u < 4, and so it can only
coincide with 5/8 + ηq if (u, v) equals(

0,
1

16ηq

)
,

(
1,

3

64ηq
− 5

8

)
,

(
2,

1

32ηq
− 5

4

)
, or

(
3,

1

64ηq
− 15

8

)
.

In order to derive at a contradiction, we show that for an infinite subsequence of q = q2m

the second entry is not an integer, say its fractional part ∥.∥ is in (1/4, 3/4). To this end

let α := log q
2 log 9 and consider the linear polynomials

ℓ1(m) = 2αm+
1

2
, ℓ2(m) =

3

2
αm− 1

8
, ℓ3(m) = αm− 3

4
, ℓ4(m) =

1

2
αm− 11

8
,
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which by the definition (2.22) of ηq describe the possible values of v+1/2 up to an error of

size O(q−2m/4). Since α is irrational (since 3 and q are coprime), it follows from Kronecker’s
approximation theorem (see e.g. [12, Thm. 442]) that there are infinitely many m such that
simultaneously ∥ℓj(m)∥ < 1/4 for 1 ≤ j ≤ 4, which by the above discussion provides the
desired sequence of zeros tending to s0.

2.6. The remaining Euler factors. Recall that at the beginning of the proof we have
possibly enlarged the set S by finitely many places. We now deal with the local factors at
these places and the infinite Euler factor. By [14, Thm. 1.1] and [2, Thm. B] the associated
local representation zeta functions ζH(Ov)(s) are rational functions (hence meromorphic on
the whole complex plane) with their right-most poles at ℜs = 2/3. As generating function
of non-negative numbers, they are non-vanishing on the segment s > 2/3, so they do not
change the polar behaviour there, nor do they change the natural boundary.

We finally discuss the Archimedean Euler factors of (1.2), which only occur in the number
field case. They are given (cf. [15, p. 359]) by powers of

ζSL3(C)(s) =
∑
m,n

1

msns(m+ n)s
.

It suffices to obtain meromorphic continuation past the region ℜs > 2/3 of absolute con-
vergence. This is straightforward (and well-known): by the integral formula for the beta
function [11, 3.196.2 with u = 0] we have, initially for ℜs > 2/3, the absolutely convergent
expression

ζSL3(C)(s) =
∑
n,m

1

m2sns(1 + n/m)s
=

∑
m,n

1

m2sns

∫
(1/3)

Γ(s− t)Γ(t)

Γ(s)

( n
m

)−t dt

2πi

=

∫
(1/3)

Γ(s− t)Γ(t)

Γ(s)
ζ(s+ t)ζ(2s− t)

dt

2πi
.

Let us assume 2/3 < ℜs < 1 and fix ε > 0 sufficiently small. Then shifting the contour to
ℜt = ε, we obtain

ζSL3(C)(s) =

∫
(ε)

Γ(s− t)Γ(t)

Γ(s)
ζ(s+ t)ζ(2s− t)

dt

2πi
+

Γ(1− s)Γ(2s− 1)

Γ(s)
ζ(3s− 1).

This is meromorphic in 1/2 < ℜs < 1 with a pole only at s = 2/3.

Remark 2.2. One can form the global Euler product∏
v ̸∈S

ζH(Fq)(s),

and by a similar Taylor expansion obtain

ζH(Fq)(s) = 1 + q2−3s + q1−2s + F ∗(s, q)

with F ∗(s, q) ≪ q−2ℜs. Arguing similarly as before, we can extend the global zeta function
meromorphically only to ℜs > 2/3. It is interesting to note that this half plane of continu-
ation is smaller than the half plane of continuation for ζH(OS). In other words, as observed
before, there is some non-trivial cancellation in the local factors ζH(Fq)(s) and ψε,q(s).
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3. Proof of Theorem 1.3

This is a standard application of Mellin inversion. The technical difficulty lies in the
fact that it is not clear (and quite possibly not true) that in the number field case ζH(OS)

has polynomial growth on vertical lines beyond the region of absolute convergence, cf. the
remark after Theorem 1.3. This is irrelevant in the function field case since all zeta functions
are 2πi

log qZ-periodic.
We first give the argument in the number field case. To obtain subexponential growth in

the region ℜs ≥ 3/4, we replace all parentheses on the right hand sides of (2.5) by

1 +O
(
min

(
1,

|s|
q

))
= 1 +O

( |s|99/100
q99/100

)
.

Then by the same computation we obtain

F (s, q) ≪ |s|99/100
(
q1−3ℜs + q−2ℜs)

in ℜs ≥ 3/4 where now the implied constant is absolute. For fixed 0 < ϵ < 1/100, we can
then write (2.16) as

ζH(OS)(s) = ζSk (2s− 1)ζSk (3s− 2)ζSk (5s− 3)5L(S)(5s− 3, χψ)4H(s)

where

H(s) = H0(s)
∏
v ̸∈S

(
1 +

O(1)

q1+ϵ
+
O(|s|99/100)

q5/4

)
≪ exp(|s|99/100)

in ℜs ≥ 3/4 + ϵ where H0 contains potentially finitely many Euler factors that we discard
at the beginning of Section 2.1. By Mellin inversion (cf. [13, (4.107)]) we now obtain∑

n

rn(H(OS))e
−n/x =

∫
(2)
ζH(OS)(s)Γ(s)x

s ds

2πi
.

We shift the contour to ℜs = 3/4+ ϵ. The residues at s = 1 and s = 4/5 yield the two main
terms, and the remaining integral is rapidly convergent on the line ℜs = 3/4 + ϵ in view of

the estimate Γ(s) ≪ (1 + |s|)1/2 exp(−π|s|/2). This completes the proof.

If k is a function field with constant field Fq, then we have the Mellin formula

rqn(H(OS)) =

∫ 2+ πi
log q

2− πi
log q

ζH(OS)(s)(q
n)s(log q)

ds

2πi

which in this case is nothing but Cauchy’s integral formula for the power series
∑

n rqn(H(OS))x
n

with x = q−s. We can now shift the contour to ℜs ≥ 3/4 + ϵ in the same way as before,
noting that the contribution of the horizontal lines cancel by periodicity.

4. Groups of type A1 – proof of Theorem 1.6

This follows from the local formulae [4, (A.5)], see also [14, Thm. 7.5], which read

ζH(Ov)(s) =1 + q−s +
(q − 3)

2(q + 1)s
+

(q − 1)1−s

2
+ 2

(q + 1

2

)−s
+ 2

(q − 1

2

)−s

+
22+sq(q2 − 1)−s + 1

2(q − 1)(q − ε)(q2 − εq)−s + 1
2(q − 1)(q − ε)(q2 + ϵq)−s

1− q1−s
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for places v of norm q ≥ 5 where H is SL2 or SU2 and accordingly ε = 1 resp. −1. By a
similar Taylor argument as before we obtain

ζH(Ov)(s) = (1− q1−s)−1
(
1 +Os(q

1−2ℜs + q−ℜs)
)

and the meromorphic continuation to ℜs > 1 follows easily. The asymptotic formula follows
as in the previous proof.

To analyze the Euler product further as we approach ℜs = 1, we continue with Taylor
expansions, and for ℜs > 1/2 we write

1− ε

qs
+

22+2s − 1

q2s−1
=

(
1 +

ϵ

qs

)−1(
1− 1

q2s−1

)1−22+s(
1 +Os

(
q2−4ℜs + q−2ℜs)).

If we write as before χ(p) = εv for a finite place v = p, we obtain

ζH(OS)(s) = ζ(s)r
ζSk (s− 1)

LS(s, χ)
ζSk (2s− 1)2

2+s−1H(s)

(with r = 0 in the function field case and r = [k : Q] in the number field case) for ℜs > 1
where H is holomorphic and nonzero in ℜs > 3/4. As ζk has a pole at s = 1, the factor

ζk(2s− 1)2
2+s−1 and hence

ζSk (2s− 1)2
2+s−1

has a branch cut singularity at s = 1. More precisely, as ζk(s) = c(s− 1)−1+O(1) as s→ 1
for a constant c ̸= 0, we have

ζk(2s− 1)2
2+s−1 =

c7

128(s− 1)7
+

c7 log 2

16(s− 1)6
log

( 1
2c

(s− 1)

)
+O(|s− 1|6).

The factor ζ(s)r/LS(s, χ) may change the exponent 7, but does not affect the type of the
brunch cut singularity.
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