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Enumerating sublattices of Zn by their index is a classical problem with an
elegant solution; cf. Theorem 1.1. In this note I argue that the simplest way to
obtain it may not be the most interesting one: by refining the original enumeration
problem and widening our point of view we discover not only new proofs but,
more importantly, links to various circles of ideas from algebra, geometry, and
combinatorics. Concretely, we will find connections with the Hermite and Smith
normal forms of integer matrices, Gaussian multinomial coefficients, permutation
statistics, Hall–Littlewood symmetric polynomials, Young tableaux, and Schubert
varieties.

1. Enumerating lattices by index

By a lattice we mean a subgroup of finite index in Zn. One rather coarse way to
enumerate lattices Λ is by their index |Zn : Λ| in Zn. I like to think of this invariant
as the “inverse density” of the points in Λ among all vectors in Zn. For m P N,
let us write ampZnq for the (finite!) number of sublattices of Zn of index m. The
zeta function of Zn turns the infinitely many numbers pampZnqqmPN into a single
object:

(1.1) ζZnpsq :“
8
ÿ

m“1

ampZnqm´s.

Here, s denotes a complex variable. We write ζpsq “
ř8

m“1 m
´s “ ζZpsq for the

Riemann zeta function.

Theorem 1.1. For all n P N we have

(1.2) ζZnpsq “

n
ź

i“1

ζps ´ i ` 1q.

This result has been (re-)proved by several people in several contexts. The oldest
source I am aware of—at least for the ideas—goes back to Hermite [5]. In fact,
Theorem 1.1 may be proven quickly using integer matrices in Hermite normal form
(HNF ): after a choice of Z-basis for Zn, we may represent a lattice by an integral
matrix which encodes in its columns, say, coordinates of generators. A unique such
matrix is in HNF, the integral analogue of reduced echelon form for matrices over
fields. The index of the lattice is just the determinant of the matrix; the i-th factor
in (1.2) takes care of the contribution of the i-th column to this count.

Example 1.2 (n “ 3, p “ 5). The matrix

MHNF “

¨

˝

25 10 3
125 100

125

˛

‚P Mat3pZq

is in Hermite normal form, representing a lattice Λ ď Z3 of index 52`3`3.
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The formula in Theorem 1.1 also occurs in work of Solomon on the integral
representation theory of finite groups [9]. The monograph [7] contains no fewer
than five proofs of this theorem, all group-theoretically motivated. Here we focus
on ideas from algebraic combinatorics and geometry.

2. Enumerating lattices by partitions

Enumerating lattices Λ simply by their index disregards the finer structure of the
finite abelian group Zn{Λ. It is a direct product, indexed by the prime numbers,
of finite abelian p-groups of the form

(2.1) Gpλ :“
n

à

i“1

Cpλi ,

where λ “ pλ1, . . . , λnq is a partition of at most n parts and Cpℓ is the cyclic group

of order pℓ. This decomposition allows us to focus on lattices of p-power index,
where p is a prime number. In this case we have Zn{Λ – Gpλ for a single partition
λ which we call the type of the lattice Λ. Equation (2.1) implies the identity

ampZnq “
ź

p prime

¨

˝

ÿ

λ$epm,pq

ap,λpZnq

˛

‚,

where ap,λpZnq is the number of lattices in Zn of p-power index and of type λ, the
product ranges over all prime numbers and the sum over all partitions λ of the
exponent epm, pq in the prime decomposition m “

ś

p prime p
epm,pq.

Assume from now on that Λ has p-power index and type λ. The numbers
`

pλ1 , . . . , pλn
˘

are exactly the elementary divisors of the p-group Gpλ or, equiva-
lently, the diagonal entries of a matrix in Smith normal form (SNF ) representing Λ.
Note that the elementary divisors are intrinsic invariants of a lattice, whereas the
HNF matrix representing it depends on a choice of basis for (or rather—as we will
discuss in Section 3—flag in) Zn.

For a beautiful formula for the numbers ap,λpZnq we write the dual partition

λ1 “ pi
pri1 q

1 , . . . , i
priℓ q

ℓ q “ pi1, . . . , i1
looomooon

ri1 times

, . . . , iℓ, . . . , iℓ
looomooon

riℓ times

q

of λ, for a unique subset I “ ti1, . . . , iℓu Ď rns of size ℓ and rI “ pri1 , . . . , riℓq P NI .
I like to think of the set I as the positions of the “jumps” in the partition λ, of
heights recorded by the vector rI . Then

(2.2) ap,λpZnq “

ˆ

n

I

˙

p´1

p
ř

iPI ipn´iq ri .

Here
`

n
I

˘

Y
“

`

n
iℓ

˘

Y

`

iℓ
iℓ´1

˘

Y
. . .

`

i2
i1

˘

ℓ
is the Y - (or Gaussian) multinomial coefficient,

generalizing the usual multinomial coefficient which we recover at Y “ 1.1 For a
prime power q and a finite field K of cardinality q, the quantity

`

n
I

˘

q
is the number

of flags

Vi1 ă Vi2 ă ¨ ¨ ¨ ă Viℓ ď Kn

comprising i-dimensional K-linear subspaces Vi of K for i P I. We note that ipn´iq
is the dimension of the Grassmannian variety of i-dimensional subspaces of an n-
dimensional vector space. Equation (2.2) may be proved using a result of Birkhoff
on the numbers of subgroups of finite abelian p-groups of given type [2].

1If, like me, you are wary of a polynomial in the inverse of p occuring in a formula for a natural
number like ap,λpZnq, you may want to check that the subsequent p-power is powerful enough to

clear any denominators, so all is well.
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Birkhoff’s formula (2.2) suggests a second proof of Theorem 1.1. For this, we
exploit the fact that it presents ap,λpZnq as the product of

(1) a polynomial in p´1, depending only on one of finitely many I Ď rns and
(2) a p-power whose exponent is linear in the natural parameters ri P N.

Products of finitely many geometric progressions do the job of summing over these
“log-linear” terms: indeed, purely formally we have

(2.3)
ÿ

rIPNI

X
ri1
i1

. . . X
riℓ
iℓ

“
ź

iPI

Xi

1 ´ Xi
.

From this it is not hard to deduce that

(2.4) ζZnpsq “
ź

p prime

¨

˝

ÿ

IĎrns

ˆ

n

I

˙

p´1

ź

iPI

pipn´iq´is

1 ´ pipn´iq´is

˛

‚.

2.1. Igusa zeta functions and permutation statistics. The factors of the Euler
product (2.4) are instances of Igusa functions of degree n, defined as follows:

(2.5) InpY ;X1, . . . , Xnq “
ÿ

IĎrns

ˆ

n

I

˙

Y

ź

iPI

Xi

1 ´ Xi
P ZrY spX1, . . . , Xnq.

Originally introduced by Igusa [6], these functions are a perfect fit for enumeration
problems involving p-adic lattices by invariants that depend on the types of the
lattices in a log-linear fashion. For references and generalizations, see [3].

Interesting connections with algebraic combinatorics emerge when we bring the
sum (2.5) on a common denominator:

(2.6) InpY ;Xq “

ř

wPSn
Y ℓpwq

ś

jPDespwq Xj
śn

i“1p1 ´ Xiq
.

Here, Sn is the symmetric group on rns, a Coxeter group with length function ℓ,
and Despwq is the descent set of w P Sn. Equation (2.6) reflects the well-known
fact that

ˆ

n

I

˙

Y

“
ÿ

wPSn: DespwqĎI

Y ℓpwq.

In light of (2.6) it is remarkable that the numerator of In gets entirely cancelled out
after the substitutions Y “ p´1, Xi “ pipn´iq´is. Indeed, combining Theorem 1.1
and (2.4) yields

1
śn

i“1p1 ´ pi´1´sq
“

ÿ

IĎrns

ˆ

n

I

˙

p´1

ź

iPI

pipn´iq´is

1 ´ pipn´iq´is
.

2.2. An excursion: p-adic lattices and affine buildings. Let Zp be the ring
of p-adic integers and Qp its field of fractions. Affine buildings associated with
the groups GLnpQpq offer a coordinate-free way to parametrize lattices of p-power
index in Zn. One way to define these buildings is as abstract simplicial complexes
on the set of homothety classes of lattices in Qn

p , by defining a suitable incidence
relation. The resulting pn ´ 1q-dimensional simplicial complex may be thought of
as glued together from subcomplexes called apartments. The latter are Coxeter

complexes of type rAn´1. Geometrically, they are Euclidean spaces, tessellated by
regular pn´1q-dimensional simplices. Algebraically, they are obtained from lattices
which are generated by p-power multiples of the members of a given (unordered)
basis of Qn

p .
A glimpse at the glass roof of the Great Court of the British Museum (Figure 2.1)

gives an idea how such an apartment looks like for n “ 3. We see lattices wherever
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six of the triangular glass panels meet at a vertex. Note that 6 “
`

3
1

˘

`
`

3
2

˘

is

the total number of non-trivial subspaces of K3, where K is any field, that can be
generated from the members of a fixed K-basis of K3.

Figure 2.1. Lattices spanning the roof of the Great Court of the
British Museum, London.

In (any apartment containing) Sir Foster’s glass roof, exactly two panels meet at
any given segment connecting incident vertices. In the full affine building associated
with GL3pQpq, each such segment is part of p ` 1 such panels. Geometrically,
the “reduction” p ÞÑ 1 corresponds to the retraction of the affine building to the
apartment we started from. The book [4] not only explains the realization of
affine buildings by p-adic lattices in an inviting way. It also illustrates the rich
combinatorial structure of affine buildings with various pictures. The Buildings
Gallery ([1]) offers appealing interactive computer visualizations.

The language of affine buildings affords another view on Birkhoff’s formula (2.2).
Indeed, the group GLnpZpq acts in a natural way on the vertices of the affine
building for GLnpQpq. This action is transitive on the sets of vertices comprising
lattices of given type λ. By the orbit stabilizer theorem, the number of such lattices
is thus the index of the stabilizer of any one of these lattices. An explicit formula
for one such stabilizer, from which the relevant index in GLnpZpq may be readily
read off, is given in [10, p. 1203].

Example 2.1 (Example 1.2 revisited). The SNF matrix representing the lattice Λ
from Example 1.2 is

MSNF “

¨

˝

55

53

1

˛

‚P Mat3pZq,

yielding I “ t1, 2u Ď r3s and rI “ p2, 3q. It is thus one of
ˆ

3

1, 2

˙

5´1

53¨2p3´2q`2¨1p3´1q “ p1 ` 2 ¨ 5´1 ` 2 ¨ 5´2 ` 5´3q 510 “ 14.531.250

lattices of 5-power index and type λ “ p5, 3, 0q. Note that λ does not encode the
powers of 5 on the diagonal of the HNF matrix MHNF.
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3. Enumerating lattices by tableaux

We now take on the challenge to enumerate lattices simultaneously by their Her-
mite and Smith normal forms. In coordinate-free language, we enumerate lattices
in Zn—without loss of generality of prime-power index—according to the types of
their intersections with the parts of a fixed complete flag

(3.1) Z ă Z2 ă ¨ ¨ ¨ ă Zn´1 ă Zn;

see Figure 3.1 for an example.

Figure 3.1. A flag over the Lac Leman near Lausanne.

We associate, in other words, with a lattice Λ not just one partition λ as in Sec-

tion 2, but n partitions λpiq “ pλ
piq
1 , . . . , λ

piq
i q, one for each i P rns, each of at most i

non-zero parts. They record the types of the rank-i lattices Λ X Zi, i.e. the iso-
morphism types of the finite abelian p-groups G

pλpiq – Zi{pΛ X Ziq. (Note that

λpnq “ λ, the type of Λ itself.) These partitions do not differ too much from one to
the next, in a precise sense: the successive differences of their Young diagrams form
horizontal strips. In other words, the sequence λ‚pΛq “ pλp1q, . . . , λpnqq of partitions
encodes the same data as a semistandard Young tableau T of shape λ with labels
from rns. Write SSYTn for the set of all such tableaux. We call a tableau reduced
if it has no repeated columns and write rSSYTn for the finite (!) set of reduced
tableaux with labels from rns.

This allows us to meet the above challenge: the lattices’ elementary divisors are
recorded in λpnq, its Hermite normal form (with respect to any basis compatible
with the fixed flag) is encoded in the (reverse) weight of T , i.e. the multiplicities
of the numbers n, . . . , 2, 1 as labels of T , in this order. Note, however, that the
tableau T associated with a lattice Λ records much more than these two sets of
data: in general, there are numerous tableaux with the same weight.

How many lattices Λ of p-power index give rise to a tableau T P SSYTn in this
way? The answer takes the form

(3.2) ΦT pp´1q p
ř

CPT DnpCq,

where ΦT pY q is the leg polynomial of T—a coefficient of theHall–Littlewood polymial
associated with the partition λ—and C ranges over the columns of T , viewed as

subsets of rns; see [8, Thm. 4.7]. The quantity DnpCq “

´

ř

iPrnszC i
¯

´
`

n´#C`1
2

˘

is the dimension of the Schubert variety associated with C.
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Example 3.1 (Example 1.2 re2visited). We fix an ordered basis pe3, e2, e1q (sic!)
and the induced flag xe1y ă xe1, e2y ă xe1, e2, e3y. We find that, with respect to
this basis, λ‚pΛq “ ppq, p3q, p4, 2q, p5, 3, 0qq. Equivalently, the tableau in SSYT3

associated with Λ is

T “ 1 1 1 2 3
2 2 3

with weight p2, 3, 3q and leg polynomial ΦT pY q “ p1 ´ Y q3. The lattice Λ is one of

ΦT pp´1q p
ř

CPT pp
ř

iPrnszC iq´pn´#C`1
2 qq “ p1 ´ 5´1q3 56 “ 8.000

lattices giving rise to the tableau T .

I invite you to draw a few parallels between (3.2) and (2.2). Both formulae are
products of a polynomial in p´1 and a p-power whose exponent depends linearly
on the multiplicities of parts taken from a finite (!) combinatorial structure: parts
of the dual partition of λ in the former case, sets of labels in the columns of the
tableau T in the latter. The coefficients of these linear forms are dimensions of
algebraic varieties: Grassmannians in the former case, Schubert varieties in the
latter.

That Schubert varieties occur in this context I find both surprising and natural.
Indeed, Schubert varieties parametrize subspaces of a vector space by the (co-)-
dimensions of their intersections with a flag of reference. In the affine analogue we
parametrize lattices by the types of their intersections with a flag of reference.

The Igusa function (2.5) funnels the infiniteness of the set of lattice types into
finitely many subsets indexed by the subsets of rns, each easily enumerable by
products of geometric progressions. Likewise, the Hall–Littlewood–Schubert series

(3.3) HLSn pY,Xq “
ÿ

TPrSSYTn

ΦT pY q
ź

CPT

XC

1 ´ XC
P ZrY s pXq .

organizes the infinitude of tableaux by the finitely many reduced tableaux. In
X “ pXCq∅‰CĎrns we comprise 2n ´ 1 variables, one for each “column-type”, viz.
set of labels in rns occurring in a column of a tableau T P SSYTn. Monomials
in these variables record multiplicities of tableaux columns with the same labels.
Products of geometric progressions enumerate the fibres of the natural surjection
SSYTn Ñ rSSYTn that removes repetitions of columns. We saw the same idea at
work in the Igusa function (2.5); see also (2.3).

Example 3.2 (Example 1.2 re3visited). Removing the first column of T in (3.1)
yields a reduced tableau T 1, with leg polynomial ΦT 1 pY q “ p1 ´ Y q3. The (non-
reduced) tableaux T contributes to HLS3pY,Xq the term

p1 ´ Y q3 X2
t1,2uXt1,3uXt2uXt3u.

It is subsumed as a summend in the product of geometric progressions indexed by
the reduced tableaux T 1, viewed as an infinite sum.

With a variable XC for each non-empty label set C Ď rns, there is plenty of
room for coarsenings of HLSn, i.e. monomial substitutions of the variables, to ob-
tain solutions to interesting (lattice) counting problems. The enumeration of lat-
tices by Smith and Hermite normal forms simultaneously is just one of them; see
[8, Thm. D]. Other applications include Hecke series associated with symplectic
groups and representation zeta functions of integral quiver representations; see [8]
for details.

Let’s wrap up. We associate with a lattice Λ ď Zn of prime-power index three
increasingly fine-grained invariants. The finest of these is a semistandard Young
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tableau T P SSYTn, measuring how Λ intersects with the members of a complete
flag within Zn. Forgetting the labels in the tableau T leaves us, secondly, with the
Young diagram of a partition λ, yielding the type of the finite abelian p-group Zn{Λ.
The number partitioned by λ yields, finally, the index of Λ in Zn. For each of the
three invariants we identified combinatorial structures tailor-made to enumerate
lattices accordingly: the (p-local factor of the) zeta function ζZn in (1.1) for the
index, the Igusa function In in (2.5) for the type, the Hall–Littlewood–Schubert
series HLSn in (3.3) for the tableau. With an exponential number of variables,
HLSn is the richest of these structures, allowing for various monomial substitutions
solving numerous related lattice enumeration problems, many of which, no doubt,
are yet to be discovered.
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