PARTITIONS, FLAGS, TABLEAUX: COMBINATORIAL ASPECTS
OF LATTICE ENUMERATION

CHRISTOPHER VOLL

Enumerating sublattices of Z™ by their index is a classical problem with an
elegant solution; cf. Theorem 1.1. In this note I argue that the simplest way to
obtain it may not be the most interesting one: by refining the original enumeration
problem and widening our point of view we discover not only new proofs but,
more importantly, links to various circles of ideas from algebra, geometry, and
combinatorics. Concretely, we will find connections with the Hermite and Smith
normal forms of integer matrices, Gaussian multinomial coefficients, permutation
statistics, Hall-Littlewood symmetric polynomials, Young tableaux, and Schubert
varieties.

1. ENUMERATING LATTICES BY INDEX

By a lattice we mean a subgroup of finite index in Z™. One rather coarse way to
enumerate lattices A is by their index |Z™ : A| in Z™. 1 like to think of this invariant
as the “inverse density” of the points in A among all vectors in Z". For m € N,
let us write a,,(Z") for the (finite!) number of sublattices of Z" of index m. The
zeta function of Z™ turns the infinitely many numbers (@, (Z™))men into a single
object:

0
(1.1) (zn(s) == ) am(Z")m™".
m=1
Here, s denotes a complex variable. We write ((s) = Y.0_, m™* = (z(s) for the
Riemann zeta function.

Theorem 1.1. For all n € N we have

n
(1.2) Gzn(s) = [¢(s—i+1).
i=1

This result has been (re-)proved by several people in several contexts. The oldest
source I am aware of—at least for the ideas—goes back to Hermite [5]. In fact,
Theorem 1.1 may be proven quickly using integer matrices in Hermite normal form
(HNF): after a choice of Z-basis for Z", we may represent a lattice by an integral
matrix which encodes in its columns, say, coordinates of generators. A unique such
matrix is in HNF, the integral analogue of reduced echelon form for matrices over
fields. The index of the lattice is just the determinant of the matrix; the i-th factor
in (1.2) takes care of the contribution of the i-th column to this count.

Example 1.2 (n = 3, p = 5). The matrix

25 10 3
MHNF = 125 100 | e Matg(Z)
125

is in Hermite normal form, representing a lattice A < Z3 of index 52+3+3,
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The formula in Theorem 1.1 also occurs in work of Solomon on the integral
representation theory of finite groups [9]. The monograph [7] contains no fewer
than five proofs of this theorem, all group-theoretically motivated. Here we focus
on ideas from algebraic combinatorics and geometry.

2. ENUMERATING LATTICES BY PARTITIONS

Enumerating lattices A simply by their index disregards the finer structure of the
finite abelian group Z"/A. It is a direct product, indexed by the prime numbers,
of finite abelian p-groups of the form

n
(21) Gp)\ = @ Cpxi,
i=1
where A = (A1,...,A,) is a partition of at most n parts and C is the cyclic group

of order pf. This decomposition allows us to focus on lattices of p-power index,
where p is a prime number. In this case we have Z" /A = G,,» for a single partition
A which we call the type of the lattice A. Equation (2.1) implies the identity

an(Z) = ]] D @@,

p prime \ Al-e(m,p)

where ap (Z™) is the number of lattices in Z™ of p-power index and of type A, the
product ranges over all prime numbers and the sum over all partitions A of the
exponent e(m,p) in the prime decomposition m = ]_[p prime pe(map)

Assume from now on that A has p-power index and type A. The numbers
(p/\l, . ,p/\") are exactly the elementary divisors of the p-group G or, equiva-
lently, the diagonal entries of a matrix in Smith normal form (SNF) representing A.
Note that the elementary divisors are intrinsic invariants of a lattice, whereas the
HNF matrix representing it depends on a choice of basis for (or rather—as we will
discuss in Section 3—flag in) Z".

For a beautiful formula for the numbers a, x(Z™) we write the dual partition

;L () (7)) . ‘ ) .
No=(y " iy ) = (i1 yia, ey iy 00)
[ —_—
ri; times Tig times
of A, for a unique subset I = {iy,...,is} S [n] of size £ and r; = (r;,,...,7;,) € NL.

I like to think of the set I as the positions of the “jumps” in the partition A, of
heights recorded by the vector r;. Then

(22) ap,)\(Z”) = (?) pZiEI i(n—1i) Te,
p1

Here ('})Y = (Z)Y(i;fl)y e (zf)z is the Y- (or Gaussian) multinomial coefficient,

generalizing the usual multinomial coefficient which we recover at Y = 1.} For a
prime power ¢ and a finite field K of cardinality ¢, the quantity (7})q is the number
of flags
Vip<Vi,<--- <V, <K"

comprising i-dimensional K-linear subspaces V; of K for i € I. We note that i(n—1)
is the dimension of the Grassmannian variety of i-dimensional subspaces of an n-
dimensional vector space. Equation (2.2) may be proved using a result of Birkhoff
on the numbers of subgroups of finite abelian p-groups of given type [2].

lIf, like me, you are wary of a polynomial in the inverse of p occuring in a formula for a natural
number like ay »(Z™), you may want to check that the subsequent p-power is powerful enough to
clear any denominators, so all is well.
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Birkhoft’s formula (2.2) suggests a second proof of Theorem 1.1. For this, we
exploit the fact that it presents a, »(Z™) as the product of
(1) a polynomial in p~!, depending only on one of finitely many I < [n] and
(2) a p-power whose exponent is linear in the natural parameters r; € N.

Products of finitely many geometric progressions do the job of summing over these
“log-linear” terms: indeed, purely formally we have

(2.3) DX X :Hli(X

rreNT el

From this it is not hard to deduce that

o e T (5 () T

p prime \ IC[n] zeI

2.1. Igusa zeta functions and permutation statistics. The factors of the Fuler
product (2.4) are instances of Iqusa functions of degree n, defined as follows:

n X;
(2.5) (Y X, ..., X,) = € Z[Y](X1,..., X,).
pH () %

iel
Originally introduced by Igusa [6], these functions are a perfect fit for enumeration
problems involving p-adic lattices by invariants that depend on the types of the
lattices in a log-linear fashion. For references and generalizations, see [3].

Interesting connections with algebraic combinatorics emerge when we bring the
sum (2.5) on a common denominator:

ZweS’n Y@(w) HjeDes(w) X]

[T, (1 - X))
Here, S, is the symmetric group on [n], a Coxeter group with length function ¢,
and Des(w) is the descent set of w € S,,. Equation (2.6) reflects the well-known

fact that
0,5
1 Y weS,,: Des(w)c I

In light of (2.6) it is remarkable that the numerator of I,, gets entirely cancelled out
after the substitutions Y = p~!, X; = p*(»=9=% Indeed, combining Theorem 1.1
and (2.4) yields

1 n pz(n i)—is
H?:l(l _pi_l_s) - Z] (I) 1_[ pi(n— 1 _ pi(n—i)—is "

Ic[n

(2.6) L (Y; X) =

2.2. An excursion: p-adic lattices and affine buildings. Let Z, be the ring
of p-adic integers and Q, its field of fractions. Affine buildings associated with
the groups GL,(Q,) offer a coordinate-free way to parametrize lattices of p-power
index in Z". One way to define these buildings is as abstract simplicial complexes
on the set of homothety classes of lattices in Qp, by defining a suitable incidence
relation. The resulting (n — 1)-dimensional simplicial complex may be thought of
as glued together from subcomplexes called apartments. The latter are Coxeter
complexes of type gn_l. Geometrically, they are Euclidean spaces, tessellated by
regular (n—1)-dimensional simplices. Algebraically, they are obtained from lattices
which are generated by p-power multiples of the members of a given (unordered)
basis of Q).

A glimpse at the glass roof of the Great Court of the British Museum (Figure 2.1)
gives an idea how such an apartment looks like for n = 3. We see lattices wherever
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six of the triangular glass panels meet at a vertex. Note that 6 = (?) + (;) is

the total number of non-trivial subspaces of K3, where K is any field, that can be
generated from the members of a fixed K-basis of K3.

FIGURE 2.1. Lattices spanning the roof of the Great Court of the
British Museum, London.

In (any apartment containing) Sir Foster’s glass roof, exactly two panels meet at
any given segment connecting incident vertices. In the full affine building associated
with GL3(Q,), each such segment is part of p + 1 such panels. Geometrically,
the “reduction” p — 1 corresponds to the retraction of the affine building to the
apartment we started from. The book [4] not only explains the realization of
affine buildings by p-adic lattices in an inviting way. It also illustrates the rich
combinatorial structure of affine buildings with various pictures. The Buildings
Gallery ([1]) offers appealing interactive computer visualizations.

The language of affine buildings affords another view on Birkhoff’s formula (2.2).
Indeed, the group GL,(Z,) acts in a natural way on the vertices of the affine
building for GL,,(Q,). This action is transitive on the sets of vertices comprising
lattices of given type A. By the orbit stabilizer theorem, the number of such lattices
is thus the index of the stabilizer of any one of these lattices. An explicit formula
for one such stabilizer, from which the relevant index in GL,(Z,) may be readily
read off, is given in [10, p. 1203].

Example 2.1 (Example 1.2 revisited). The SNF matrix representing the lattice A
from Example 1.2 is

55
MSNF = 53 € Mat3 (Z),
1

yielding I = {1,2} < [3] and r; = (2, 3). It is thus one of

(132> 5326=2+216-D — (1 4 2.5t 4 2.572 4+ 573) 50 = 14.531.250
9 5—1

lattices of 5-power index and type A = (5,3,0). Note that A does not encode the
powers of 5 on the diagonal of the HNF matrix MynF.



3. ENUMERATING LATTICES BY TABLEAUX

We now take on the challenge to enumerate lattices simultaneously by their Her-
mite and Smith normal forms. In coordinate-free language, we enumerate lattices
in Z"—without loss of generality of prime-power index—according to the types of
their intersections with the parts of a fixed complete flag

(3.1) TZ<Z?<---<Z'' <7

see Figure 3.1 for an example.

FiGUure 3.1. A flag over the Lac Leman near Lausanne.

We associate, in other words, with a lattice A not just one partition A as in Sec-
tion 2, but n partitions A(*) = ()\gi), cey )\Ei)), one for each i € [n], each of at most i
non-zero parts. They record the types of the rank-i lattices A n Z?, i.e. the iso-
morphism types of the finite abelian p-groups GPW) ~ Z'/(A n Z%). (Note that

A = X the type of A itself.) These partitions do not differ too much from one to
the next, in a precise sense: the successive differences of their Young diagrams form
horizontal strips. In other words, the sequence A\*(A) = (A ..., A\() of partitions
encodes the same data as a semistandard Young tableau T of shape A with labels
from [n]. Write SSYT,, for the set of all such tableaux. We call a tableau reduced
if it has no repeated columns and write rSSYT,, for the finite (!) set of reduced
tableaux with labels from [n].

This allows us to meet the above challenge: the lattices’ elementary divisors are
recorded in A\("), its Hermite normal form (with respect to any basis compatible
with the fixed flag) is encoded in the (reverse) weight of T, i.e. the multiplicities
of the numbers n,...,2 1 as labels of T, in this order. Note, however, that the
tableau T associated with a lattice A records much more than these two sets of
data: in general, there are numerous tableaux with the same weight.

How many lattices A of p-power index give rise to a tableau T' € SSYT,, in this
way? The answer takes the form

(3-2) Op(p~t) preer P9,

where &1 (Y") is the leg polynomial of T—a coefficient of the Hall-Littlewood polymial
associated with the partition A—and C ranges over the columns of T, viewed as
subsets of [n]; see [8, Thm. 4.7]. The quantity D, (C) = (Zie[n]\c ,) _ (n—#20+1)
is the dimension of the Schubert variety associated with C.
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Example 3.1 (Example 1.2 re?visited). We fix an ordered basis (e3, ez, €1) (sic!)
and the induced flag {e1) < {e1,e3) < {e1,eq,e3). We find that, with respect to
this basis, A*(A) = ((), (3), (4,2), (5,3,0)). Equivalently, the tableau in SSYT;
associated with A is

7o [1][1]1]2]3]
2|2

W

with weight (2,3, 3) and leg polynomial ®7(Y) = (1 —Y)3. The lattice A is one of

n7#2C+1))

B (pt) pRoer (Ziepne 1)~ = (1-571)*55 = 8.000

lattices giving rise to the tableau T

I invite you to draw a few parallels between (3.2) and (2.2). Both formulae are
products of a polynomial in p~! and a p-power whose exponent depends linearly
on the multiplicities of parts taken from a finite (!) combinatorial structure: parts
of the dual partition of A in the former case, sets of labels in the columns of the
tableau 7' in the latter. The coefficients of these linear forms are dimensions of
algebraic varieties: Grassmannians in the former case, Schubert varieties in the
latter.

That Schubert varieties occur in this context I find both surprising and natural.
Indeed, Schubert varieties parametrize subspaces of a vector space by the (co-)-
dimensions of their intersections with a flag of reference. In the affine analogue we
parametrize lattices by the types of their intersections with a flag of reference.

The Igusa function (2.5) funnels the infiniteness of the set of lattice types into
finitely many subsets indexed by the subsets of [n], each easily enumerable by
products of geometric progressions. Likewise, the Hall-Littlewood—Schubert series

Xc
(3.3) HLS, (V,X) = > ®r(Y) ] 1— Xo
TerSSYT,, CeT

e Z[Y] (X).

organizes the infinitude of tableaux by the finitely many reduced tableaux. In
X = (X¢)zxccn) We comprise 2" — 1 variables, one for each “column-type”, viz.
set of labels in [n] occurring in a column of a tableau T' € SSYT,,. Monomials
in these variables record multiplicities of tableaux columns with the same labels.
Products of geometric progressions enumerate the fibres of the natural surjection
SSYT,, — rSSYT,, that removes repetitions of columns. We saw the same idea at
work in the Igusa function (2.5); see also (2.3).

Example 3.2 (Example 1.2 re’visited). Removing the first column of T in (3.1)
yields a reduced tableau T", with leg polynomial ®7/(Y) = (1 — Y)?. The (non-
reduced) tableaux T contributes to HLS3(Y, X) the term

(1-Y)? X{, 0y X (1,3 X (23 X3}

It is subsumed as a summend in the product of geometric progressions indexed by
the reduced tableaux T”, viewed as an infinite sum.

With a variable X for each non-empty label set C' € [n], there is plenty of
room for coarsenings of HLS,,, i.e. monomial substitutions of the variables, to ob-
tain solutions to interesting (lattice) counting problems. The enumeration of lat-
tices by Smith and Hermite normal forms simultaneously is just one of them; see
[8, Thm. D]. Other applications include Hecke series associated with symplectic
groups and representation zeta functions of integral quiver representations; see [8]
for details.

Let’s wrap up. We associate with a lattice A < Z" of prime-power index three
increasingly fine-grained invariants. The finest of these is a semistandard Young



tableau T' € SSYT,,, measuring how A intersects with the members of a complete
flag within Z™. Forgetting the labels in the tableau T leaves us, secondly, with the
Young diagram of a partition A, yielding the type of the finite abelian p-group Z™/A.
The number partitioned by X yields, finally, the index of A in Z™. For each of the
three invariants we identified combinatorial structures tailor-made to enumerate
lattices accordingly: the (p-local factor of the) zeta function (z» in (1.1) for the
index, the Igusa function I, in (2.5) for the type, the Hall-Littlewood—Schubert
series HLS,, in (3.3) for the tableau. With an exponential number of variables,
HLS,, is the richest of these structures, allowing for various monomial substitutions
solving numerous related lattice enumeration problems, many of which, no doubt,
are yet to be discovered.
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